# Angewandte Chemie 

## Supporting Information

# Polyunsaturated C-Glycosidic 4-Hydroxy-2-pyrone Derivatives: Total Synthesis Shows that Putative Orevactaene Is Likely Identical with Epipyrone A 

Johannes Preindl, Saskia Schulthoff, Conny Wirtz, Julia Lingnau, and Alois Fürstner*
anie_201702189_sm_miscellaneous_information.pdf

General. All reactions were carried out under Ar in flame-dried glassware. The solvents were purified by distillation over the drying agents indicated and were transferred under Ar : THF, $\mathrm{Et}_{2} \mathrm{O}$ ( Mg /anthracene), $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(\mathrm{CaH}_{2}\right)$, 1,4-dioxane ( $\mathrm{Na} / \mathrm{K}$ alloy), $\mathrm{MeOH}(\mathrm{Mg})$. DMF, pyridine and $\mathrm{NEt}_{3}$ were dried by an absorption solvent purification system based on molecular sieves. $i \mathrm{Pr}_{2} \mathrm{NH}$ was purified by distillation over $\mathrm{CaH}_{2}$ and transferred under $\mathrm{Ar} . \mathrm{CH}_{3} \mathrm{NO}_{2}$ was used in technical grade quality. Flash chromatography: Merck silica gel $60(40-63 \mu \mathrm{~m})$. NMR: Spectra were recorded on Bruker AV 400, Bruker AV 500 or Bruker AV 600 spectrometers in the solvents indicated; chemical shifts ( $\delta$ ) are given in ppm relative to TMS, coupling constants $(J)$ in Hz . The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}\right.$ : residual $\mathrm{CHCl}_{3}$ in $\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} \equiv 77.16 \mathrm{ppm} ; \delta_{\mathrm{H}} \equiv$ $7.26 \mathrm{ppm} ;\left[\mathrm{D}_{6}\right]$-DMSO: residual $\left[\mathrm{D}_{5}\right]$-DMSO in $\left[\mathrm{D}_{6}\right]$-DMSO $\left.\delta_{\mathrm{C}} \equiv 39.52 \mathrm{ppm} ; \delta_{\mathrm{H}} \equiv 2.50 \mathrm{ppm}\right)$ IR: Spectrum One (Perkin-Elmer) spectrometer, wavenumbers $\tilde{v}$ in $\mathrm{cm}^{-1}$. MS (EI): Finnigan MAT 8200 (70 eV), ESIMS: ESQ 3000 (Bruker), accurate mass determinations: Bruker APEX III FT-MS (7 T magnet) or MAT 95 (Finnigan). Unless stated otherwise, all commercially available compounds (ABCR, Acros, Aldrich, Strem) were used as received.

D-glycero-D-galacto-Heptono-1,4-lactone ${ }^{[1]},(2 E, 4 E, 6 E)-7$-(tributylstannyl)hepta-2,4,6-trien-1-ol ${ }^{[2]}$, (S)-1-iodo-2-methylbutane ${ }^{[3]}, \quad \mathrm{N}$-((1S,2S)-1-hydroxy-1-phenylpropan-2-yl)-N-methylpropionamide ${ }^{[4]}, \mathrm{N}$ -((1R,2R)-1-hydroxy-1-phenylpropan-2-yl)-N-methyl-propionamide ${ }^{[5]},(R)$-4-benzyl-3-butyryloxazolidin-2-one ${ }^{[6]}$, 1-iodo-1-propyne ${ }^{[7]}$, thexylborane ${ }^{[8]}, \mathrm{PhMe}_{2} \mathrm{SiLi}^{[9]}$, SPhosAuNTf ${ }^{[10]}$ and $\left[\mathrm{Ph}_{2} \mathrm{PO}_{2}\right]\left[\mathrm{NBu}_{4}\right]^{[11]}$ were prepared according to literature procedures.

[^0]Table S-1. Comparison of the ${ }^{13} \mathrm{C}$ NMR Spectra (ppm) recorded in [ $\left.\mathrm{D}_{4}\right]$-MeOH of Epipyrone A (NP) ${ }^{[\text {a] }}$ with synthetic (20S, 22R)-2, (22S, 20S)-2, (22R,20R)-2 and (20R,22S)-2; arbitrary numbering scheme as shown; signals marked * and ** have been mutually interchanged; ${ }^{[b]} \Delta \delta=$ shift (synth. sample $-N P$ ) Color code: orange: $0.5 \mathrm{ppm} \leq|\Delta \delta|<1 \mathrm{ppm} ;$ red: $|\Delta \delta| \geq 1 \mathrm{ppm} ;$


| Nr | $N P^{\text {[a] }}$ |  |  |  |  | $\Delta \delta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 166,2* | 166,2 0,0 | 166,3 0,1 | 166.2 0,0 | 166.2 | 0,0 |
| 2 | 101,5 | 101,9 0,4 | 101,9 0,4 | 101.9 0,4 | 101.9 | 0,4 |
| 3 | 171,1* | 170,6 -0,5 | 170,5 -0,6 | $170.4-0,7$ | 170.4 | -0,7 |
| 4 | 102,4 | 102,5 0,1 | 102,4 0,0 | 102.3 -0,1 | 102.3 | -0,1 |
| 5 | 160,0 | 160,7 0,7 | 160,7 0,7 | 160.8 0,8 | 160.8 | 0,8 |
| 6 | 122,5 | 122,6 0,1 | 122,6 0,1 | 122.6 0,1 | 122.6 | 0,1 |
| 7 | 137,5 | 137,6 0,1 | 137,6 0,1 | 137.6 0,1 | 137.6 | 0,1 |
| 8 | 132,0 | 132,3 0,3 | 132,3 0,3 | 132.3 0,3 | 132.3 | 0,3 |
| 9 | 140,5 | 140,6 0,1 | 140,6 0,1 | 140.6 0,1 | 140.6 | 0,1 |
| 10 | 132,4** | 133,7 1.3 | 133,7 1,3 | 133.6 1,2 | 133.7 | 1,3 |
| 11 | 138,2 | 138,1 -0,1 | 138,1 -0,1 | 138.1 -0,1 | 138.2 | 0,0 |
| 12 | 134,0 | 134,1 0,1 | 134,1 0,1 | 134.1 0,1 | 134.1 | 0,1 |
| 13 | 137,0 | 137,1 0,1 | 137,1 0,1 | 137.1 0,1 | 137.1 | 0,1 |
| 14 | 130,2** | 130,1 -0,1 | 130,2 0,0 | 130.2 0,0 | 130.2 | 0,0 |
| 15 | 140,5 | 140,4 -0,1 | 140,4 -0,1 | $140.4-0,1$ | 140.4 | -0,1 |
| 16 | 137,5 | 136,7 -0,8 | 136,7 -0,8 | $136.7-0,8$ | 136.7 | -0,8 |
| 17 | 131,5 | 131,5 0,0 | 131,4 -0,1 | $131.4-0,1$ | 131.5 | 0,0 |
| 18 | 132,0 | 132,1 0,1 | 132,4 0,4 | 132.4 0,4 | 132.0 | 0,0 |
| 19 | 149,0 | 149,2 0,2 | 149,1 0,1 | 149.1 0,1 | 149.3 | 0,3 |


| 20 | 33,3 | 33,1 | -0,2 | 33,2 | -0,1 | 33.2 | -0,1 | 33.1 | -0,2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21 | 46,1 | 45,8 | -0,3 | 45,9 | -0,2 | 45.9 | -0,2 | 45.8 | -0,3 |
| 22 | 34,0 | 33,5 | -0,5 | 33,9 | -0,1 | 33.9 | -0,1 | 33.5 | -0,5 |
| 23 | 31,4 | 30,3 | -1,1 | 31,3 | -0,1 | 31.3 | -0,1 | 30.3 | -1,1 |
| 24 | 11,8 | 11,6 | -0,2 | 11,8 | 0,0 | 11.7 | -0,1 | 11.6 | -0,2 |
| 25 | 19,5 | 20,0 | 0,5 | 19,6 | 0,1 | 19.6 | 0,1 | 20.0 | 0,5 |
| 26 | 22,0 | 21,1 | -0,9 | 21,8 | -0,2 | 21.8 | -0,2 | 21.1 | -0,9 |
| 27 | 172,3 | 172,2 | -0,1 | 172,2 | -0,1 | 172.1 | -0,2 | 172.1 | -0,2 |
| 28 | 14,0 | 13,8 | -0,2 | 13,8 | -0,2 | 13.8 | -0,2 | 13.8 | -0,2 |
| 29 | 76,7 | 76,5 | -0,2 | 76,5 | -0,2 | 76.5 | -0,2 | 76.5 | -0,2 |
| 30 | 70,5 | 70,5 | 0,0 | 70,4 | -0,1 | 70.4 | -0,1 | 70.5 | 0,0 |
| 31 | 76,8 | 76,7 | -0,1 | 76,6 | -0,2 | 76.6 | -0,2 | 76.6 | -0,2 |
| 32 | 71,3 | 71,1 | -0,2 | 71,2 | -0,1 | 71.2 | -0,1 | 71.1 | -0,2 |
| 33 | 81,0 | 81,1 | 0,1 | 81,0 | 0,0 | 81.1 | 0,1 | 81.1 | 0,1 |
| 34 | 62,9 | 62,8 | -0,1 | 62,9 | 0,0 | 62.9 | 0,0 | 62.8 | -0,1 |
| $[\alpha]^{[c]}$ | +27.8 | +147.1 |  | +14.2 |  | -44.0 |  | -118.4 |  |

${ }^{[a]}$ C. Calder, S. Ford, A. I. Selwood, R. v. Ginkel, A. L. Wilkins, WO 2012/023865 A1;
${ }^{[b]}$ As the signal assignment for the synthetic samples is unambiguous, we assume that the signals of C1/C3 and C10/14 are mutually interchanged in the literature
${ }^{[c]}[a]_{\mathrm{D}}^{20}(\mathrm{c}=0.05, \mathrm{MeOH})$

Table S-2. Comparison of the ${ }^{13} \mathrm{C}$ NMR Spectra (ppm) recorded in [ $\left.\mathrm{D}_{6}\right]$-DMSO of putative Orevactaene (NP) ${ }^{[a]}$ with synthetic (20S,22R)-2, (22S,20S)-2, (22R,20R)-2 and (20R,22S)-2; arbitrary numbering scheme as shown; signals marked * and ** have been mutually interchanged; ${ }^{[b]} \Delta \delta=$ shift (synth. sample $-N P$ )


| Nr | $N P^{[a]}$ |  |  |  |  | $\Delta \delta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 162.2* | 162,3 0,1 | 162,2 0,0 | 162.2 0,0 | 162.3 | 0,1 |
| 2 | 101.4 | 101,4 0,0 | 101,4 0,0 | 101.4 0,0 | 101.4 | 0,0 |
| 3 | 167.6* | 167,2 -0,4 | 167,0 -0,6 | $167.1-0,5$ | 167.1 | -0.5 |
| 4 | 101.6 | 101,4 0,2 | 101,3 -0,3 | 101.3 -0,3 | 101.3 | -0,3 |
| 5 | 157.8 | 157,7 0,1 | 157,8 0,0 | 157.7 -0,1 | 157.7 | -0,1 |
| 6 | 122.5 | 122,3 0,2 | 122,3 -0,2 | 122.3 -0,2 | 122.3 | -0,2 |
| 7 | 134.7 | 134,6 0,1 | 134,7 0,0 | 134.7 0,0 | 134.7 | 0,0 |
| 8 | 131.8 | 131,4 0,4 | 131,9 0,1 | $131.4-0,4$ | 131.4 | -0,4 |
| 9 | 138.7 | 138,5 0,2 | 138,6 -0,1 | 138.5 -0,2 | 138.5 | -0,2 |
| 10 | 132.8** | 132,6 -0,2 |  | 132.6 -0,2 | 132.6 | -0,2 |
| 11 | 136.4 | 136,2 0,2 |  | $136.2-0,2$ | 136.2 | -0,2 |
| 12 | 133.1 | 132,9 0,2 |  | 132.9 -0,2 | 132.9 | -0,2 |
| 13 | 135.5 | 135,4 0,1 |  | $135.4-0,1$ | 135.4 | -0,1 |
| 14 | 129.0** | 128,8 -0,2 |  | 128.8 -0,2 | 128.8 | -0,2 |
| 15 | 139.1 | 138,9 0,2 | 138,9 -0,2 | 138.9 -0,2 | 138.9 | -0,2 |
| 16 | 134.7 | 134,6 0,1 | 134,5 -0,2 | 134.5 -0,2 | 134.6 | -0,1 |
| 17 | 130.6 | 130,4 0,2 | 130,4 -0,2 | $130.4-0,2$ | 130.4 | -0,2 |
| 18 | 131.4 | 130,8 0,6 | 131,2 -0,2 | 131.4 0,0 | 130.8 | -0,6 |
| 19 | 146.7 | 146,7 0,0 | 146,5 -0,2 | 146.5 -0,2 | 146.7 | 0,0 |
| 20 | 31.5 | 31,3 0,2 | 31,3 -0,2 | $31.3-0,2$ | 31.3 | -0,2 |


| 21 | 44.1 | 43,0 | 1,1 | 43,9 | -0,2 | 43.9 | -0,2 | 43.8 | -0,3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 22 | 32.2 | 31,6 | 0,6 | 32,0 | -0,2 | 32,0 | -0,2 | 31.6 | -0,6 |
| 23 | 29.7 | 28,4 | 1,3 | 29,6 | -0,1 | 29.6 | -0,1 | 28.5 | -1,2 |
| 24 | 11.3 | 10,9 | 0,4 | 11.1 | -0,2 | 11.1 | -0,2 | 11.0 | -0,3 |
| 25 | 18.9 | 19,3 | -0,4 | 18,8 | -0,1 | 18.8 | -0,1 | 19.4 | 0,5 |
| 26 | 21.4 | 20,5 | 0,9 | 21,3 | -0,1 | 21.3 | -0,1 | 20.5 | -0,9 |
| 27 | 169.6 | 169,4 | 0,2 | 169,4 | -0,2 | 169.4 | -0,2 | 169.4 | -0,2 |
| 28 | 13.3 | 13,1 | 0,2 | 13,1 | -0,2 | 13.1 | -0,2 | 13.1 | -0,2 |
| 29 | 74.5 | 74,4 | 0,1 | 74,3 | -0,2 | 74.4 | -0,1 | 74.4 | -0,1 |
| 30 | 67.9 | 67,9 | 0,0 | 67,9 | 0,0 | 67.9 | 0,0 | 67.9 | 0,0 |
| 31 | 75.3 | 75,0 | 0,3 | 75,0 | -0,3 | 75.0 | -0,3 | 75.0 | -0,3 |
| 32 | 69.1 | 68,9 | 0,2 | 68,9 | -0,2 | 68.9 | -0,2 | 68.9 | -0,2 |
| 33 | 79.3 | 79,1 | 0,2 | 79,1 | -0,2 | 79.1 | -0,2 | 79.1 | -0,2 |
| 34 | 60.9 | 60,7 | 0,2 | 60,7 | -0,2 | 60.7 | -0,2 | 60.7 | -0,2 |

${ }^{[a]}$ Y.-Z. Shu, Q. Ye, H. Li, K. F. Kadow, R. A. Hussain, S. Huang, D. R. Gustavson, S. E. Lowe, L.-P. Chang, D. M. Pirnik, K. Kodukula, Bioorg. Med. Chem. Lett. 1997, 7, 2295-2298.
${ }^{[b]}$ As the signal assignment for the synthetic samples is unambiguous, we assume that the signals of C1/C3 and C10/14 are mutually interchanged in the literature

Table S-3. Comparison of the ${ }^{1} \mathrm{H}$ NMR Spectra (ppm) recorded in $\left[D_{4}\right]-\mathrm{MeOH}$ of epipyrone A (NP) ${ }^{[b]}$ with synthetic $(20 S, 22 R)-2,(22 S, 20 S)-2$ (partI) as well as with (22R,20R)-2 and (20R,22S)-2 (part II); arbitrary numbering scheme as shown


Part I

| Nr | $N P^{[b]}$ |  |  |
| :---: | :---: | :---: | :---: |
| 4 | 6.08 (s, 1H) | 6.08 (s, 1H) | 6.08 (s, 1H) |
| 6 | 6.18 (d, J = 14.8, 1H) | 6.20 (d, J = 15.0 Hz, 1H) | 6.19 (d, J = 15.1 Hz, 1H) |
| 7 | $7.12(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | 7.14 (dd, J = 15.3, 11.3 Hz, 1H) | 7.10-7.18 (m, 1H) |
| 8 | $6.43(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | 6.42 (dd, $J=14.711 .3 \mathrm{~Hz}, 1 \mathrm{H})^{\text {a }}$ | 6.42 (m, 1H) ${ }^{\text {a }}$ |
| 9 | $6.62(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | 6.64 (dd, J = 14.7, 11.2, 1H) | 6.64 (dd, J = 14.7, 11.2 Hz, 1H) |
| 10 | $6.32(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | 6.39 (dd, J = 14.6, 11.2 Hz, 1H) ${ }^{\text {a }}$ | $6.39(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ |
| 11 | $6.41(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | 6.50 (dd, J = 14.6, 10.3 Hz, 1H) | 6.51 (dd, J = 14.7, 10.3 Hz, 1H) |
| 12 | 6.47 (m, 1H) ${ }^{\text {a }}$ | 6.40 (d, J = 10.3 Hz, 1H) ${ }^{\text {a }}$ | $6.40(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ |
| 13 | $6.39(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | $6.43(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | $6.46(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ |
| 14 | 6.34 (1H) ${ }^{\text {a }}$ | $6.41(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | $6.41(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ |
| 15 | $6.44(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | $6.41(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | $6.41(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ |
| 17 | 6.13 (s, 1H) | 6.13-6.11 (m, 1H) | 6.13 (s, 1H) |
| 19 | 5.61 (d, J = $10.5 \mathrm{~Hz}, 1 \mathrm{H})$ | 5.64 (dd, J = 10.4, 1.2, 1H) | 5.60 (dd, J = 10.4, 1.2 Hz, 1H) |
| 20 | 3.03 (m, 1H) | 3.06-2.95 (m, 1H) | 3.02 (m, 1H) |
| 21 | 1.12 (m, 1H); 1.35 (m, 1H) | 1.17 (m, 1H); 1.29 (m, 1H) | 1.11 (m, 1H); 1.35 (m, 1H) |
| 22 | 1.32 (m, 1H) | 1.39 (m, 1H) | 1.31 (m, 1H) |
| 23 | 1.16 (m, 1H); 1.33 (m, 1H) | 1.09 (dt, J = 12.8, 7.4, 1H); 1.39 (m, 1H) | 1.16 (m, 1H); $1.31(\mathrm{~m}, 1 \mathrm{H})$ |
| 24 | 0.87 (t, J = $7.6 \mathrm{~Hz}, 3 \mathrm{H})$ | 0.86 (t, J = 7.4, 3H) | $0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$ |
| 25 | 0.85 (d, J = $6.0 \mathrm{~Hz}, 3 \mathrm{H}$ ) | 0.86 (d, J = 6.5, 3 H ) | 0.85 (d, J = $6.3 \mathrm{~Hz}, 3 \mathrm{H}$ ) |
| 26 | 1.02 (d, J = 6.6 Hz, 3H) | 1.00 (d, J = 6.6, 3 H ) | 1.02 (d, J = $6.6 \mathrm{~Hz}, 3 \mathrm{H})$ |
| 28 | 1.87 (s, 3H) | 1.87 (d, $J=1.2,3 \mathrm{H})$ | 1.87 (d, J = $1.2 \mathrm{~Hz}, 1 \mathrm{H}$ ) |


| $\mathbf{2 9}$ | $4.55(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$ | $4.53(\mathrm{~d}, J=9.7,1 \mathrm{H})$ | $4.54(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H})$ |
| :--- | :--- | :---: | :---: |
| $\mathbf{3 0}$ | $4.21(\mathrm{t}, J=9.9,1 \mathrm{H})$ | $4.19(\mathrm{t}, J=9.5,1 \mathrm{H})$ | $4.19(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H})$ |
| $\mathbf{3 1}$ | $3.53(\mathrm{dd}, J=2.7,9.3 \mathrm{~Hz}, 1 \mathrm{H})$ | $3.51(\mathrm{dd}, J=3.2,9.4,1 \mathrm{H})$ | $3.52(\mathrm{dd}, J=9.4,3.2 \mathrm{~Hz}, 1 \mathrm{H})$ |
| $\mathbf{3 2}$ | $3.93(\mathrm{~d}, J=2.7,1 \mathrm{H})$ | $3.91(\mathrm{~d}, J=3.1,1 \mathrm{H})$ | $3.92(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$ |
| $\mathbf{3 3}$ | $3.62(\mathrm{~m}, 1 \mathrm{H})$ | $3.62-3.59(\mathrm{~m}, 1 \mathrm{H})$ | $3.61(\mathrm{~m}, 1 \mathrm{H})$ |
| $\mathbf{3 4}$ | $3.72-3.76(\mathrm{~m}, 2 \mathrm{H})$ |  | $3.72(\mathrm{~m}, 2 \mathrm{H})$ |

Part II

| Nr | $N P^{\text {[a] }}$ |  |  |
| :---: | :---: | :---: | :---: |
| 4 | 6.08 (s, 1H) | 6.08 (s, 1H) | 6.08 (s, 1H) |
| 6 | 6.18 (d, J = 14.8, 1H) | 6.19 (d, J = 15.1 Hz, 1H) | 6.20 (d, J = 15.1 Hz, 1H) |
| 7 | 7.12 (m, 1H) ${ }^{\text {a }}$ | 7.14 (dd, $J=15.3,11.5 \mathrm{~Hz}, 1 \mathrm{H})$ | 7.14 (dd, J = 15.2, 11.2 Hz, 1H) |
| 8 | $6.43(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | 6.42 (dd, $J=14.4,11.5 \mathrm{~Hz}, 1 \mathrm{H})^{\text {a }}$ | 6.43 (dd, J = 14.5, 11.2 Hz, 1H) ${ }^{\text {a }}$ |
| 9 | $6.62(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | 6.64 (dd, $J=14.4,11.1 \mathrm{~Hz}, 1 \mathrm{H})$ | 6.64 (dd, J = 14.5, 11.1 Hz, 1H) |
| 10 | $6.32(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | 6.38 (dd, $J=14.8,11.1 \mathrm{~Hz}, 1 \mathrm{H})^{\text {a }}$ | 6.39 (dd, J = 14.7, 11.1 Hz, 1H) ${ }^{\text {a }}$ |
| 11 | $6.41(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | 6.50 (dd, $J=14.8,10.1 \mathrm{~Hz}, 1 \mathrm{H})$ | 6.51 (dd, J = 14.7, 10.3 Hz, 1H) |
| 12 | 6.47 (m, 1H) ${ }^{\text {a }}$ | $6.41(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H})^{\mathrm{a}}$ | 6.40 (d, J = 10.3 Hz, 1H $)^{\text {a }}$ |
| 13 | $6.39(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | $6.42(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | $6.43(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ |
| 14 | $6.34(1 \mathrm{H})^{\text {a }}$ | $6.40(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | $6.42(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ |
| 15 | $6.44(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | $6.40(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ | $6.41(\mathrm{~m}, 1 \mathrm{H})^{\text {a }}$ |
| 17 | 6.13 (s, 1H) | 6.12 (s, 1H) | 6.12 (m, 1H) |
| 19 | 5.61 (d, J = 10.5 Hz, 1H) | 5.60 (d, J = 10.3 Hz, 1H) | 5.65 (dd, J = 10.3, 1.2 Hz, 1H) |
| 20 | 3.03 (m, 1H) | 3.01 (m, 1H) | 3.00 (m, 1H) |
| 21 | 1.12 (m, 1H); 1.35 (m, 1H) | 1.11 (m, 1H); 1.35 (m, 1H) | 1.17 (tdd, J = 13.2, 6.6, 5.6 Hz, 1H); 1.29 ( dt, J = 13.4, 6.6 Hz, 1H) |
| 22 | 1.32 (m, 1H) | 1.30 (m, 1H) | 1.37 (m, 1H) |
| 23 | 1.16 (m, 1H); 1.33 (m, 1H) | 1.16 (m, 1H); 1.30 (m, 1H) | 1.09 (m); 1.41 (m) |


| 24 | 0.87 (t, J = $7.6 \mathrm{~Hz}, 3 \mathrm{H})$ | 0.86 (m, 3H) | 0.86 (m, 3H) |
| :---: | :---: | :---: | :---: |
| 25 | 0.85 (d, $J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$ | 0.85 (m, 3H) | 0.86 (d, J = 6.6 Hz, 3H) |
| 26 | 1.02 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$ | 1.01 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$ | 1.00 (d, J = 6.6 Hz, 3H) |
| 28 | 1.87 (s, 3H) | 1.87 ( $\mathrm{s}, 3 \mathrm{H})$ | 1.87 (d, J = $1.2 \mathrm{~Hz}, 3 \mathrm{H})$ |
| 29 | 4.55 (d, J = 9.3 Hz, 1H) | 4.53 (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H})$ | 4.53 (d, J = 9.7 Hz, 1H) |
| 30 | 4.21 (t, J = 9.9, 1H) | $4.19(\mathrm{t}, \mathrm{J}=9.7 \mathrm{~Hz}, 1 \mathrm{H})$ | 4.19 (t, J = 9.5 Hz, 1H) |
| 31 | 3.53 (dd, J = 2.7, 9.3 Hz, 1H) | 3.52 (m, 1H) | 3.51 (dd, J = 9.4, 3.2 Hz, 1H) |
| 32 | 3.93 ( $\mathrm{d}, \mathrm{J}=2.7,1 \mathrm{H})$ | 3.91 (m, 1H) | 3.91 (dd, J = 3.3, 0.9 Hz, 1H) |
| 33 | 3.62 (m, 1H) | 3.61 (m, 1H) | 3.60 (m, 1H) |
| 34 | 3.72-3.76 (m, 2H) | 3.73 (m, 1H) | 3.69 (dd, J = 11.5, 5.2 Hz, 1H); 3.74 (dd, J = 11.5, $6.8 \mathrm{~Hz}, 1 \mathrm{H}$ ) |

${ }^{\text {a }}$ overlapping signals; ${ }^{[b]}$ data reported in Bioorg. Med. Chem Lett. 2012, 22, 3188 are used for the comparison; the data contained in the patent on epipyrone A (WO 2012/023865) are slightly different

Table S-4. Comparison of the ${ }^{13} \mathrm{C}$ NMR data ( $\left[\mathrm{D}_{6}\right]$-DMSO) of putative Orevactaene (NP) and (S,R)-1, showing a severe mismatch in the head group; arbitrary numbering scheme as shown; signals marked * and ${ }^{* *}$ have been mutually interchanged (see above); $\Delta \delta=\operatorname{ppm}((S, R)-\mathbf{1}-\mathbf{N P})$


| $\mathbf{N r}$ | Literature $^{[\mathrm{a}]}$ | $(\mathbf{S}, \boldsymbol{R}) \mathbf{- 1}$ | $\mathbf{\Delta \delta}$ |
| :---: | :---: | :---: | ---: |
| $\mathbf{1}$ | $162.2^{*}$ | 162.3 | +0.1 |
| $\mathbf{2}$ | 101.4 | 99.8 | -0.6 |
| $\mathbf{3}$ | 74.5 | 62.5 | -12.0 |
| $\mathbf{4}$ | 67.9 | 68.9 | +1.0 |
| $\mathbf{5}$ | 75.3 | 78.4 | +3.1 |
| $\mathbf{6}$ | $167.6^{*}$ | 165.0 | -2.6 |
| $\mathbf{7}$ | 101.6 | 100.9 | -0.7 |
| $\mathbf{8}$ | 157.8 | 157.7 | -0.1 |
| $\mathbf{9}$ | 122.5 | 122.1 | -0.4 |
| $\mathbf{1 0}$ | 134.7 | 134.8 | +0.1 |
| $\mathbf{1 1}$ | 131.8 | 131.4 | -0.4 |
| $\mathbf{1 2}$ | 138.7 | 138.7 | 0.0 |
| $\mathbf{1 3}$ | $132.8^{* *}$ | 132.6 | -0.2 |
| $\mathbf{1 4}$ | 136.4 | 136.3 | -0.1 |
| $\mathbf{1 5}$ | 133.1 | 132.9 | -0.2 |
| $\mathbf{1 6}$ | 135.5 | 135.5 | 0.0 |
| $\mathbf{1 7}$ | $129.0^{* *}$ | 128.8 | -0.2 |
| $\mathbf{1 8}$ | 139.1 | 139.0 | -0.1 |
| $\mathbf{1 9}$ | 134.7 | 134.5 | -0.2 |
| $\mathbf{2 0}$ | 130.6 | 130.5 | -0.1 |
| $\mathbf{2 1}$ | 131.4 | 131.3 | -0.1 |
| $\mathbf{2 2}$ | 146.7 | 146.4 | -0.3 |
| $\mathbf{2 3}$ | 31.5 | 31.3 | -0.2 |
| $\mathbf{2 4}$ | 44.1 | 43.9 | -0.2 |
| $\mathbf{2 5}$ | 32.2 | 32.0 | -0.2 |
| $\mathbf{2 6}$ | 29.7 | 29.6 | -0.1 |
| $\mathbf{2 7}$ | 11.3 | 11.1 | -0.2 |
| $\mathbf{2 8}$ | 18.9 | 18.8 | -0.1 |
| $\mathbf{2 9}$ | 21.4 | 21.3 | -0.1 |
| $\mathbf{3 0}$ | 169.6 | 169.5 | -0.1 |
| $\mathbf{3 1}$ | 13.3 | 13.2 | -0.1 |
| $\mathbf{3 2}$ | 69.1 | 70.6 | +1.5 |
| $\mathbf{3 3}$ | 79.3 | 70.1 | +2.2 |
| $\mathbf{3 4}$ | 60.9 | 63.2 | +2.3 |
|  |  |  |  |

${ }^{[a]}$ Y.-Z. Shu, Q. Ye, H. Li, K. F. Kadow, R. A. Hussain, S. Huang, D. R. Gustavson, S. E. Lowe, L.-P. Chang, D. M. Pirnik, K. Kodukula, Bioorg. Med. Chem. Lett. 1997, 7, 2295-2298.

Table S-5. Comparison of the ${ }^{1} \mathrm{H}$ NMR data ( $\left[\mathrm{D}_{6}\right]$-DMSO) of putative Orevactaene (NP) and (S,R)-1; arbitrary numbering scheme as shown


| Nr | Literature ${ }^{[\sqrt{\text { a }}}$ | $(S, R)-1$ |
| :---: | :---: | :---: |
| 3 | 4.25 (d, J = 9.5 Hz, 1H) | 4.33 (ddd, $J=5.2,3.8,1.2 \mathrm{~Hz}, 1 \mathrm{H})$ |
| 4 | 4.11 (dd, J = 9.5, 9.3 Hz, 1H) | 3.84 (ddd, $J=4.2,3.8,3.5 \mathrm{~Hz}, 1 \mathrm{H})$ |
| 5 | 3.27 (dd, $J=9.3,2.8 \mathrm{~Hz}, 1 \mathrm{H})$ | 4.59 (dt, J = 3.5, 1.2 Hz, 1H) |
| 7 | 6.18 (s, 1H) | 6.21 (s, 1H) |
| 9 | $6.30 \mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H})$ | 6.33 (d, J = 15.2 Hz, 1H); |
| 10 | 7.00 (dd, $J=15.2,11.4 \mathrm{~Hz}, 1 \mathrm{H})$ | 7.04 (dd, $J=15.2,11.3 \mathrm{~Hz}, 1 \mathrm{H})$ |
| 11 | 6.45 (dd, overlapping) | 6.47 (m, 1H) |
| 12 | 6.70 (dd, $J=14.8,11.3 \mathrm{~Hz}, 1 \mathrm{H}$ ) | 6.73 (dd, $J=14.6,11.3 \mathrm{~Hz}, 1 \mathrm{H})$ |
| 13 | 6.42 (dd, overlapping, 1H) | 6.44 (m, 1H) |
| 14 | 6.51 (dd, overlapping, 1H) | 6.53 (dd, $J=14.4,10.4 \mathrm{~Hz}, 1 \mathrm{H})$ |
| 15 | 6.41 (dd, overlapping, 1H) | 6.45 (m, 1H) |
| 16 | 6.47 (dd, overlapping, 1H) | 6.49 (m, 1H) |
| 17 | 6.40 (dd, overlapping, 1H) | 6.42 (m, 1H) |
| 18 | 6.40 (dd, overlapping, 1H) | 6.43 (m, 1H) |
| 20 | 6.11 (s, 1H) | 6.13 (s, 1H) |
| 22 | 5.56 (d, J = 10.3 Hz, 1H) | 5.58 (d, J = $10.1 \mathrm{~Hz}, 1 \mathrm{H}$ ) |
| 23 | 2.90 (m, 1H) | 2.92 (m, 1H) |
| 24 | 1.24 (m, 1H) | 1.31 (ddd, $J=13.0,9.8,4.0 \mathrm{~Hz}, 1 \mathrm{H})$ |
|  | 1.08 (m, 1H) | 1.08 (ddd, $J=13.0,9.0,4.6 \mathrm{~Hz}, 1 \mathrm{H})$ |
| 25 | 1.20 (m, 1H) | 1.26 (m, 1H) |
| 26 | 1.20 (m, 1H) | 1.25 (m, 1H) |
|  | 1.10 (m, 1H) | 1.11 (m, 1H) |
| 27 | 0.80 (t, J = $7.6 \mathrm{~Hz}, 3 \mathrm{H}$ ) | 0.82 (t, J = $7.3 \mathrm{~Hz}, 3 \mathrm{H}$ ) |
| 28 | 0.78 (d, J = 7,1 Hz, 3H) | 0.80 (d, J = 6.5 Hz, 3H) |
| 29 | 0.96 (d, J = $7.1 \mathrm{~Hz}, 3 \mathrm{H}$ ) | 0.97 (d, J = 6.6 Hz, 3H) |
| $30 \mathrm{CO}_{2} \mathrm{H}$ | 8.00 (bs, 1H) | 12.75 (bs, 1H) |
| 31 | 1.79 (s, 3H) | 1.81 (s, 3H) |
| 32 | 3.70 (dd, $J=6.2,2.8 \mathrm{~Hz}, 1 \mathrm{H})$ | 3.63 (ddd, J = 9.2, 4.1, 1.2 Hz, 1H) |
| 33 | 3.37 (m, overlapping, 1H) | 3.51 (dddd, J = 9.2, 6.0, 5.2, 3.0 Hz, 1H) |
| 34 | 3.42 (m, 1H) | 3.62 (m, 1H) |
|  | 3.39 (m, 1H) | 3.40 (ddd, $J=11.2,5.4,5.2 \mathrm{~Hz}, 1 \mathrm{H})$ |
| 3-OH |  | 6.17 (d, J = 5.2 Hz, 1H) |
| 4-OH |  | 5.45 (d, J = 4.2 Hz, 1H) |
| 32-OH |  | 5.13 (d, J = $4.1 \mathrm{~Hz}, 1 \mathrm{H})$ |
| $33-\mathrm{OH}$ |  | 4.81 (d, J = 6.0 Hz, 1H) |
| $34-\mathrm{OH}$ |  | 4.37 (t, J = 5.4 Hz, 1H) |

${ }^{[a]}$ Y.-Z. Shu, Q. Ye, H. Li, K. F. Kadow, R. A. Hussain, S. Huang, D. R. Gustavson, S. E. Lowe, L.-P. Chang, D. M. Pirnik, K. Kodukula, Bioorg. Med. Chem. Lett. 1997, 7, 2295-2298.

Table S-6. Comparison of the ${ }^{13} \mathrm{C}$ NMR data ( $\left[\mathrm{D}_{6}\right]$-DMSO) of putative Orevactaene (NP) and (S,S)-1, showing a severe mismatch in the head group; arbitrary numbering scheme as shown; signals marked ${ }^{*}$ and $^{* *}$ have been mutually interchanged (see above); $\Delta \delta=\operatorname{ppm}((S, S)-\mathbf{1}-\mathbf{N P}) ;$ n.r. $=$ not resolved


| $\mathbf{N r}$ | Literature $^{[\text {a] }]}$ | (S,S)-1 | $\mathbf{\Delta \delta}$ |
| :---: | :---: | :---: | ---: |
| $\mathbf{1}$ | $162.2^{*}$ | 162.3 | +0.1 |
| $\mathbf{2}$ | 101.4 | 99.8 | $-1,6$ |
| $\mathbf{3}$ | 74.5 | 62.5 | -12.0 |
| $\mathbf{4}$ | 67.9 | 68.9 | +1.0 |
| $\mathbf{5}$ | 75.3 | 78.4 | +3.1 |
| $\mathbf{6}$ | $167.6^{*}$ | 165.0 | -2.6 |
| $\mathbf{7}$ | 101.6 | 100.9 | -0.7 |
| $\mathbf{8}$ | 157.8 | 157.7 | -0.1 |
| $\mathbf{9}$ | 122.5 | 122.1 | -0.4 |
| $\mathbf{1 0}$ | 134.7 | 134.8 | +0.1 |
| $\mathbf{1 1}$ | 131.8 | 131.3 | -0.5 |
| $\mathbf{1 2}$ | 138.7 | 138.7 | 0.0 |
| $\mathbf{1 3}$ | $132.8^{* *}$ | 132.4 | -0.4 |
| $\mathbf{1 4}$ | 136.4 | 136.4 | 0.0 |
| $\mathbf{1 5}$ | 133.1 | 132.7 | -0.4 |
| $\mathbf{1 6}$ | 135.5 | 135.5 | 0.0 |
| $\mathbf{1 7}$ | $129.0^{* *}$ | 128.5 | -0.5 |
| $\mathbf{1 8}$ | 139.1 | 139.2 | +0.1 |
| $\mathbf{1 9}$ | 134.7 | n.r. |  |
| $\mathbf{2 0}$ | 130.6 | n.r. |  |
| $\mathbf{2 1}$ | 131.4 | n.r. |  |
| $\mathbf{2 2}$ | 146.7 | n.r. |  |
| $\mathbf{2 3}$ | 31.5 | 31.2 | -0.3 |
| $\mathbf{2 4}$ | 44.1 | 43.9 | -0.2 |
| $\mathbf{2 5}$ | 32.2 | 31.6 | -0.6 |
| $\mathbf{2 6}$ | 29.7 | 28.5 | -1.2 |
| $\mathbf{2 7}$ | 11.3 | 11.0 | -0.3 |
| $\mathbf{2 8}$ | 18.9 | 19.4 | +0.5 |
| $\mathbf{2 9}$ | 21.4 | 20.6 | -0.8 |
| $\mathbf{3 0}$ | 169.6 | $n . r$. | -0.2 |
| $\mathbf{3 1}$ | 13.3 | 13.1 | +1.5 |
| $\mathbf{3 2}$ | 69.1 | 70.6 | -9.2 |
| $\mathbf{3 3}$ | 79.3 | 63.2 | +2.3 |
| $\mathbf{3 4}$ | 60.9 |  |  |
|  |  |  |  |

[^1]Table S-7. Comparison of the ${ }^{1} \mathrm{H}$ NMR data ( $\left[\mathrm{D}_{6}\right]$-DMSO) of putative Orevactaene (NP) and (S,S)-1; arbitrary numbering scheme as shown


| Nr | Literature ${ }^{[a]}$ | $(S, S)-1$ |
| :---: | :---: | :---: |
| 3 | 4.25 (d, J = 9.5 Hz, 1H) | 4.33 (dd, $J=5.2,3.8 \mathrm{~Hz}, 1 \mathrm{H})$ |
| 4 | 4.11 (dd, $J=9.5,9.3 \mathrm{~Hz}, 1 \mathrm{H})$ | $3.84(q, J=3.8 \mathrm{~Hz}, 1 \mathrm{H})$ |
| 5 | 3.27 (dd, J = 9.3, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$ ) | 4.58 (d, J = 3.8 Hz, 1H) |
| 7 | 6.18 (s, 1H) | 6.21 (s, 1H) |
| 9 | $6.30 \mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H})$ | 6.33 (d, J = 15.2 Hz, 1H) |
| 10 | 7.00 (dd, J = 15.2, 11.4 Hz, 1H) | 7.04 (dd, $J=15.2,11.4 \mathrm{~Hz}, 1 \mathrm{H})$ |
| 11 | 6.45 (dd, overlapping) | 6.47 (dd, J = 14.5, 11.4 Hz, 1H) |
| 12 | 6.70 (dd, $J=14.8,11.3 \mathrm{~Hz}, 1 \mathrm{H}$ ) | 6.73 (dd, $J=14.5,11.3 \mathrm{~Hz}, 1 \mathrm{H})$ |
| 13 | 6.42 (dd, overlapping, 1H) | 6.44 (dd, $J=14.4,11.3 \mathrm{~Hz}, 1 \mathrm{H})$ |
| 14 | 6.51 (dd, overlapping, 1H) | 6.53 (dd, J = 14.4, 10.5 Hz, 1H) |
| 15 | 6.41 (dd, overlapping, 1H) | 6.44 (m, 1H) |
| 16 | 6.47 (dd, overlapping, 1H) | 6.49 (m, 1H) |
| 17 | 6.40 (dd, overlapping, 1H) | 6.40 (m, 1H) |
| 18 | 6.40 (dd, overlapping, 1H) | 6.43 (m, 1H) |
| 20 | 6.11 (s, 1H) | 6.12 (s, 1H) |
| 22 | 5.56 (d, J = 10.3 Hz, 1H) | 5.55 (bs, 1H) |
| 23 | 2.90 (m, 1H) | 2.89 (m, 1H) |
| 24 | 1.24 (m, 1H) | 1.24 (m, 1H) |
|  | 1.08 (m, 1H) | 1.12 (m, 1H) |
| 25 | 1.20 (m, 1H) | 1.32 (m, 1H) |
| 26 | 1.20 (m, 1H) | 1.34 (m, 1H) |
|  | 1.10 (m, 1H) | 1.06 (m, 1H) |
| 27 | 0.80 (t, J = 7.6 Hz, 3H) | $0.81(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$ |
| 28 | 0.78 (d, $J=7,1 \mathrm{~Hz}, 3 \mathrm{H})$ | 0.81 (d, J = $6.8 \mathrm{~Hz}, 3 \mathrm{H})$ |
| 29 | 0.96 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$ | 0.94 (d, J = $6.4 \mathrm{~Hz}, 3 \mathrm{H})$ |
| $30 \mathrm{CO}_{2} \mathrm{H}$ | 8.00 (bs, 1H) | 12.76 (bs, 1H) |
| 31 | 1.79 (s, 3H) | 1.81 (s, 3H) |
| 32 | 3.70 (dd, J = 6.2, 2.8 Hz, 1H) | 3.64 (dd, J = 9.2, $4.0 \mathrm{~Hz}, 1 \mathrm{H}$ ) |
| 33 | 3.37 (m, overlapping, 1H) | 3.51 (m, 1H) |
| 34 | 3.42 (m, 1H) | 3.62 (m, 1H) |
|  | 3.39 (m, 1H) | 3.40 (m, 1H) |
| 3-OH |  | 6.17 (d, J = 5.2 Hz, 1H) |
| 4-OH |  | 5.45 (d, J = 4.0 Hz, 1H) |
| 32-OH |  | 5.14 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H})$ |
| $33-\mathrm{OH}$ |  | 4.82 (d, J = 5.9 Hz, 1H) |
| $34-\mathrm{OH}$ |  | 4.38 (m, 1H) |

${ }^{[a]}$ Y.-Z. Shu, Q. Ye, H. Li, K. F. Kadow, R. A. Hussain, S. Huang, D. R. Gustavson, S. E. Lowe, L.-P. Chang, D. M. Pirnik, K. Kodukula, Bioorg. Med. Chem. Lett. 1997, 7, 2295-2298.

## THE PUTATIVE OREVACTAENE SERIES

## 2,3,5,6,7 Penta-O-benzyl-D-glycero-D-galacto-heptono-1,4-lactone (6). TfOH ( $1.70 \mathrm{~mL}, 19.2 \mathrm{mmol}$ )

 was added to a suspension of D-glycero-D-galacto-heptono-1,4-lactone (5) ${ }^{[1]}$ ( $20.0 \mathrm{~g}, 96.1 \mathrm{mmol}$ ) and benzyl trichloroacetimidate ( $194.1 \mathrm{~g}, 768.6 \mathrm{mmol}$ ) in dioxane ( 890 mL ) and the mixture was stirred for 18 h at room temperature. The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}$ and the aqueous layer extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The residue was boiled with aq. $\mathrm{NaOH}(1 \mathrm{~m}, 144 \mathrm{~mL})$ for 30 min . After reaching ambient temperature, the mixture was acidified with aq. HCl and the aqueous layer extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography ( $\mathrm{SiO}_{2}$, hexane:EtOAc, $20: 1$ to $5: 1$ ) afforded the title compound as a yellow oil ( $46.9 \mathrm{~g}, 74 \%$ ). $[a]_{\mathrm{D}}^{20}:-19.3\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41-7.24(\mathrm{~m}, 21 \mathrm{H}), 7.23$ $-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.60-4.45(\mathrm{~m}, 6 \mathrm{H}), 4.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.17 (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.83 (dd, $J=8.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.80-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{dd}, J=10.7,3.2 \mathrm{~Hz}$, 1H) ppm; ${ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.8,138.1,138.0,137.6,137.1,137.0,128.7,128.6$, 128.53, 128.48, 128.3, 128.2, 128.1, 127.93, 127.87, 79.8, 78.9, 78.0,77.5, 75.0, 74.2, 73.5, 72.5, 72.4, 72.2, 67.7 ppm ; IR (film): $\tilde{v}=3063,3030,2867,1787,1655,1603,1586,1496,1454,1209$, 1095, $1028 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{Na}^{+}$: 681.28225; found: 681.28228 .

2,3,5,6,7 Penta-O-benzyl-D-glycero-D-galacto-heptofuranose (S1). DIBAL-H ( $27.6 \mathrm{~mL}, 27.6 \mathrm{mmol}, 1$
 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) was added dropwise to a solution of $6(14.0 \mathrm{~g}, 21.25 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(210 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After stirring at $-78^{\circ} \mathrm{C}$ for 1 h , the mixture was warmed to $-45^{\circ} \mathrm{C}$ over 2 h and the reaction was quenched with methanol and sat. aq. $\mathrm{Na} / \mathrm{K}$ tartrate. After warming to room temperature the mixture was extracted with $t \mathrm{BuOMe}$ $(3 \mathrm{x})$. The combined organic layers were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, 5:1) afforded the title compound as a yellow oil $(11.94 \mathrm{~g}$, $85 \%) .[a]_{D}^{20}:-5.0\left(c=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.39-7.14(\mathrm{~m}, 25 \mathrm{H}), 5.40(\mathrm{~d}, \mathrm{~J}=5.1$ $\mathrm{Hz}, 0.5 \mathrm{H}), 5.29(\mathrm{dd}, \mathrm{J}=11.6,4.3 \mathrm{H}, 0.5 \mathrm{H}), 4.72-4.25(\mathrm{~m}, 11 \mathrm{H}), 4.10-3.93(\mathrm{~m}, 3 \mathrm{H}), 3.83-3.74(\mathrm{~m}$, $2 \mathrm{H}), 3.74-3.66(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.62(\mathrm{bs}, 0.5 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta$ $=139.2,139.1,139.0,138.9,138.8,138.4(2 \mathrm{C}), 138.2,138.1,137.5,129.2,128.91,128.85,128.73$, 128.66, 128.64, 128.56, 128.47, 128.41, 128.36, 128.31, 128.26, 128.21, 128.17, 128.14, 128.01, $127.98,127.88,127.85,101.2,96.5,88.5,85.4,83.4,82.5,82.3,81.6,79.5,79.3,78.8,77.98,77.95$,
75.2, $74.7,73.7,73.6,72.8,72.7,72.4,72.19,72.15,72.0,70.0,68.9 \mathrm{ppm} ; \operatorname{IR}$ (film): $\tilde{v}=3426,3062$, 3029, 2867, 1495, 1495, 1453, 1208, 1091, $1028 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{Na}^{+}$: 683.29758; found: 283.29792 .

1-Deoxy-3,4,6,7,8-penta-O-benzyl-D-glycero-D-galacto-oct-1-ynitol (7). nBuLi (1.6 M in hexane, $30.0 \mathrm{~mL}, 48.0 \mathrm{mmol})$ was added dropwise to a solution of $i \mathrm{Pr}_{2} \mathrm{NH}(8.8 \mathrm{~mL}$,
 62.8 mmol ) in THF ( 44 mL ) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$ and then cooled to $-78^{\circ} \mathrm{C}$. Diazomethyl)trimethylsilane ( $15.3 \mathrm{~mL}, 30.6 \mathrm{mmol}$, 2 M in hexane) was added dropwise and stirring was continued for 1 h at $-78^{\circ} \mathrm{C}$. Next, a solution of $\mathbf{S 1}(6.0 \mathrm{~g}, 9.1 \mathrm{mmol})$ in THF ( 44 mL ) was added dropwise and the resulting mixture was warmed to room temperature over 18 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane:EtOAc, $\left.10: 1\right)$ to give the title compound as a yellow oil ( $3.9 \mathrm{~g}, 65 \%$ ). $[a]_{\mathrm{D}}^{20}:+1.5\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right.$ ); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.34-7.14(\mathrm{~m}, 25 \mathrm{H})$, $4.90(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.54-4.45(\mathrm{~m}, 5 \mathrm{H}), 4.41(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=8.1,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.92-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~d}, \mathrm{~J}=2.0$ $\mathrm{Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=138.43(2 \mathrm{C}), 138.37,138.2,137.7,128.5,128.42$, $128.38,128.36,128.2,128.1,127.9,127.8,127.70,127.65,81.4,80.8,79.3,76.3,76.0,73.8,73.5$, 73.1, 72.8, 71.3, 69.87, 67.84, 68.2 ppm; IR (film): $\tilde{v}=3500,3287,3087,3062,3030,1496,1453$, 1208, 1088, 1068, $1027 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Na}^{+}$: 679.30262; found: 679.30301.
(2R,3R,4S)-3,4-Bis(benzyloxy)-2-((1R,2R)-1,2,3-tris(benzyloxy)propyl)-3,4-dihydro-2H-pyran

$\mathrm{W}(\mathrm{CO})_{6}$ ( $42 \mathrm{mg}, 0.12 \mathrm{mmol}$ ) was added to a degassed (pump and freeze) solution of 7 ( $500 \mathrm{mg}, 0.76 \mathrm{mmol}$ ) and DABCO (dried by sublimation) in THF ( 4 mL ) at room temperature and the resulting mixture was irradiated without cooling using UV-A lamps, causing gentle reflux. After 4 h the mixture was concentrated and the residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, 10:1) to afford the title compound ( $342 \mathrm{mg}, 68 \%$ ). $[a]_{\mathrm{D}}^{20}$ : $-13.4\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.37-7.17(\mathrm{~m}, 25 \mathrm{H}), 6.37(\mathrm{dd}, \mathrm{J}=6.1,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.03(\mathrm{~d}, J=12.6, \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dd}, J=6.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{t}, J=11.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.61-4.49(\mathrm{~m}, 7 \mathrm{H})$, $4.39(\mathrm{dt}, J=6.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{dd}, J=9.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.85(\mathrm{~m}, 1 \mathrm{H})$, $3.81(\mathrm{dd}, J=10.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=10.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $145.3,138.8,138.6,138.5,138.4,138.2,128.6,128.5,128.4,128.2,128.1,127.90,127.88,127.7$, 127.5, 127.4, 99.9, 78.2, 77.3, 76.6, 75.5, 74.5, 74.0, 73.4, 72.7 (2 C), $70.3,69.3 \mathrm{ppm}$; IR (film): $\tilde{v}=$

3062, 3029, 2963, 1648, 1496, 1553, 1361, 1330, 1208, 1090, $1027 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{43} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Na}^{+}$: 679.30260; found: 679.30301 .

## (2R,3R,4S)-3,4-Bis(benzyloxy)-2-((1R,2R)-1,2,3-tris(benzyloxy)propyl)-3,4-dihydro-2H-pyran-5-carb-

 aldehyde (10). $\mathrm{POCl}_{3}(4.00 \mathrm{~mL}, 42.91 \mathrm{mmol})$ was added dropwise over 1.5 h to a solution of $9(1.40 \mathrm{~g}$, $2.13 \mathrm{mmol})$ in DMF ( 4.5 mL ) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 24 h while warming slowly to room temperature. For work up, the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}$ and the aqueous phase was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, $5: 1$ ) afforded the title compound as a yellow oil ( $950 \mathrm{mg}, 65 \%$ ). $[a]_{\mathrm{D}}^{20}:-24.7$ (c = 1, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=9.33(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 20 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.07(\mathrm{~m}$, $5 \mathrm{H}), 4.79-4.72(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.48(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=2.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.19(\mathrm{~m}, 5 \mathrm{H})$, $3.97(\mathrm{t}, \mathrm{J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.67-3.58(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 190.6, 165.0, 138.6, 138.5, 138.1, 137.9, 137.7, 128.5, 128.4, 128.3, 128.1, 128.02, 127.96 127.7, $127.7,127.6,127.5,127.3,118.1,80.4,78.4,76.5,75.2,73.7,73.2,71.9,71.8,71.5,68.8,67.0 \mathrm{ppm} ;$ IR (film): $\tilde{v} 3063,3030,2866,1672,1624,1454,1206,1090,1072,1028 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{44} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{Na}^{+}:$707.29789; found: 707.29792.

## (2R,3R,4S)-3,4-Bis(benzyloxy)-2-((1R,2R)-1,2,3-tris(benzyloxy)propyl)-3,4-dihydro-2H-pyran-5-

carboxylic acid (S2). $\mathrm{NaH}_{2} \mathrm{PO}_{4}(631 \mathrm{mg}, 5.26 \mathrm{mmol})$ followed by $\mathrm{H}_{2} \mathrm{O}_{2}(0.9 \mathrm{~mL}, 9.26 \mathrm{mmol}, 35 \%$ in
 water) were added to a solution of 10 ( $900 \mathrm{mg}, 1.31 \mathrm{mmol}$ ) in $t \mathrm{BuOH} / \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(2: 2: 1,6.75 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 5 min before $\mathrm{NaClO}_{2}(1.22 \mathrm{~g}, 10.79 \mathrm{mmol}, 80 \%)$ was added and stirring was continued for 16 h at room temperature. The mixture was diluted with water and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, 3:1) afforded the title compound as a colorless oil ( $710 \mathrm{mg}, 77 \%$ ). $[a]_{\mathrm{D}}^{20}:-15.8\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right.$ ); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.01(\mathrm{~m}$, 25H), $4.80-4.66(\mathrm{~m}, 3 \mathrm{H}), 4.66-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.52-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.39-4.14(\mathrm{~m}, 6 \mathrm{H}), 3.99-3.94$ $(\mathrm{m}, 1 \mathrm{H}), 3.90-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{dd}, \mathrm{J}=8.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.0$, 158.1, 138.8, 138.7, 138.2, 138.1, 137.9, 128.64, 128.56, 128.55, 128.51, 128.48, 128.4, 128.3, 128.2, $128.12,128.11,128.0,127.94,127.85,127.7,127.4,127.3,105.0,79.0,78.6,76.7,75.5,73.7,72.9$, 71.9, 71.8, 71.3, 69.1 (2 C) ppm; IR (film): $\tilde{v}=3063,3030,2970,1676,1625,1454,1287,1197,1090$, 1072, $1028 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{44} \mathrm{H}_{44} \mathrm{O}_{8} \mathrm{Na}^{+}$: 723.29304; found: 723.29284. dihydro-2H-pyran-5-carboxylate (11). DEAD ( $0.55 \mathrm{~mL}, 3.02 \mathrm{mmol}$ ) was added dropwise over 1 h to a
 solution of S2 ( $700 \mathrm{mg}, 1.00 \mathrm{mmol}$ ), 2-TMS-ethanol ( $0.43 \mathrm{~mL}, 3.00 \mathrm{mmol}$ ) and $\mathrm{PPh}_{3}(945 \mathrm{mg}, 3.60 \mathrm{mmol})$ in THF $(5.00 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 16 h while warming to room temperature, before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, $20: 1$ to $10: 1$ ) afforded the title compound as a colorless oil ( $639 \mathrm{mg}, 80 \%$ ). $[a]_{\mathrm{D}}^{20}:-2.1\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right.$ ); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.61(\mathrm{~s}, 1 \mathrm{H}), 7.41-7.21(\mathrm{~m}$, $21 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 4 \mathrm{H}), 4.79-4.59(\mathrm{~m}, 5 \mathrm{H}), 4.53-4.44(\mathrm{~m}, 2 \mathrm{H}), 4.41-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.22$ $(\mathrm{m}, 7 \mathrm{H}), 3.97(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=9.1,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.10-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=167.6,155.7,138.9,138.7$, 138.3, 138.1, 138.0, 128.6, 128.53, 128.47, 128.4, 128.31, 128.25, 128.10, 128.06, 127.93, 127.89, $127.8,127.66,127.57,127.4,127.2,106.2,78.6,76.8,75.5,73.7,73.0,72.1,71.7,71.3,69.5,69.1$, 62.4 (2 C), 17.6, -1.3 ppm; IR (film): $\tilde{v}=3063,3030,2951,1700,1631,1496,1454,1280,1250,1196$, $1071 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{49} \mathrm{H}_{56} \mathrm{O}_{8} \mathrm{SiNa}^{+}$: 823.36437; found: 823.36369.

2-(Trimethylsilyl)ethyl (2S,3S,4S)-2-((1S,2R)-2,3-bis((tert-butyldimethylsilyl)oxy)-1-hydroxypropyl)-3,4-bis((tert-butyldimethylsilyl)oxy)-3,4-dihydro-2H-pyran-5-carboxylate (12). $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ (62 mg,
 $20 \%$ loading) was added to a solution of 11 ( $620 \mathrm{mg}, 0.77 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{OH}$ $(3.7 \mathrm{~mL})$ at room temperature. The suspension was purged with hydrogen and stirred for 5 h under hydrogen atmosphere (1 atm). The suspension was filtered through a plug of Celite ${ }^{\circledR}$, which was rinsed with $\mathrm{CH}_{3} \mathrm{OH}$. The combined filtrates were concentrated and the residue was dried under high vacuum.

Pyridine ( $1.9 \mathrm{~mL}, 22.9 \mathrm{mmol}$ ) and TBSOTf ( $2.8 \mathrm{~mL}, 11.95 \mathrm{mmol}$ ) were added at $0{ }^{\circ} \mathrm{C}$ to a solution of the crude product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 1.9 mL ). After stirring for 16 h at room temperature, the reaction was quenched with water and the mixture extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, 1:0 to $\left.100: 1\right)$ afforded the title compound as a colorless oil ( $593 \mathrm{mg}, 95 \%$ ). $[a]_{\mathrm{D}}^{20}:-13.8$ (c = 1, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.78(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{t}, \mathrm{J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}$, $1 \mathrm{H})$, ppm. $4.27-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{dd}, J=2.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, \mathrm{J}=10.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.68$ $(\mathrm{m}, 2 \mathrm{H}), 1.02-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}$, $3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.10-0.08(\mathrm{~m}, 6 \mathrm{H}), 0.06-0.03 \mathrm{~m}, 12 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR
$\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.6,158.2,104.7,77.6,72.7,71.8,71.1,64.3,62.0,26.2,26.1,25.9,25.7$, 18.6, 18.3, 18.2, 18.0, 17.6, -1.3, -4.0, -4.4, -4.6, -4.78, -4.78, -4.83 ppm; IR (film): $\tilde{v}=3397,2953$, 2929, 2894, 2858, 1701, 1635, 1472, 1405, 1362, 1251, 1199, $1071 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{38} \mathrm{H}_{82} \mathrm{O}_{8} \mathrm{Si}_{5} \mathrm{Na}^{+}$: 829.47537; found: 829.47483.

2-(Trimethylsilyl)ethyl (2S,3S,4S)-2-((1S,2R)-2,3-bis((tert-butyldimethylsilyl)oxy)-1-hydroxypropyl)-3,4-bis((tert-butyldimethylsilyl)oxy)-6-iodo-3,4-dihydro-2H-pyran-5-carboxylate (13). nBuLi (1.6 M

in hexanes, $4.1 \mathrm{~mL}, 6.56 \mathrm{mmol}$ ) was added dropwise to a solution of $i \mathrm{Pr}_{2} \mathrm{NH}(1.4 \mathrm{~mL}, 9.99 \mathrm{mmol})$ in THF $(6.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 15 min . The solution was cooled to $-78^{\circ} \mathrm{C}$ and a solution of 12 ( $450 \mathrm{mg}, 0.56 \mathrm{mmol}$ ) in THF ( 6.3 mL ) was added dropwise. The mixture was stirred for 1.5 h at $-78^{\circ} \mathrm{C}$ before a solution of iodine ( $1.85 \mathrm{~g}, 7.29 \mathrm{mmol}$ ) in THF ( 6.3 mL ) was added dropwise. Stirring was continued for 30 min at $-78^{\circ} \mathrm{C}$ before the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The mixture was extracted with $t \mathrm{BuOMe}$, the combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, $\left.60: 1\right)$ afforded the title compound as a colorless oil ( $370 \mathrm{mg}, 71 \%$ ). $[a]_{\mathrm{D}}^{20}$ : -19.1 ( $\mathrm{c}=1, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $4.67-4.64(\mathrm{~m}, 1 \mathrm{H}), 4.64-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.06(\mathrm{~m}$, $1 \mathrm{H}), 3.93(\mathrm{dd}, \mathrm{J}=2.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=10.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.69(\mathrm{~m}, 2 \mathrm{H}), 1.10-1.03(\mathrm{~m}$, $2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}$, $3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $=166.3,123.8,110.2,83.0,72.9,71.1,70.7,66.5,64.2,63.0,26.2,26.1,25.8,25.7,18.6,18.3,18.1$, 18.0, 17.7, -1.4, -4.1, -4.4, -4.7 (3 C), -4.8, -5.2, -5.3 ppm; IR (film): $\tilde{v}=3395,2954,2929,2857,1693$, 1579, 1471, 1252, 1123, $1067 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{38} \mathrm{H}_{81} \mathrm{O}_{8} \mathrm{Si}_{5} \mathrm{INa}^{+}: 955.37258$; found: 955.37148.

2-(Trimethylsilyl)ethyl (2S,3S,4S)-2-((1S,2R)-2,3-bis((tert-butyldimethylsilyl)oxy)-1-hydroxypropyl)-3,4-bis((tert-butyldimethylsilyl)oxy)-6-(3-hydroxyprop-1-yn-1-yl)-3,4-dihydro-2H-pyran-5-
carboxylate (14). $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2} \quad(34 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{Cul}(17 \mathrm{mg}, 0.09 \mathrm{mmol})$ followed by
 propargyl alcohol ( $150 \mu \mathrm{~L}, 2.6 \mathrm{mmol}$ ) were added to a degassed (pump and freeze, 3 cycles) solution of 13 ( $404 \mathrm{mg}, 0.43 \mathrm{mmol}$ ) in $\mathrm{NEt}_{3}(4.1 \mathrm{~mL})$. The mixture was stirred for 18 h before the reaction was quenched with water. The aqueous phase was extracted with $t \mathrm{BuOMe}$, and the combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the residue by flash chromatography ( $\mathrm{SiO}_{2}$, hexanes:EtOAc, $10: 1$ ) afforded the title compound as a colorless oil ( $318 \mathrm{mg}, 85 \%$ ). $[a]_{\mathrm{D}}^{20}:-34.6$ ( $\mathrm{c}=1, \mathrm{CHCl}_{3}$ );
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.62-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.38-4.28(\mathrm{~m}$, $1 \mathrm{H}), 4.17-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=10.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.69(\mathrm{~m}, 3 \mathrm{H})$, $1.78(\mathrm{bt}, \mathrm{J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.08-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.24$ $(\mathrm{s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.124(\mathrm{~s}, 3 \mathrm{H}), 0.119(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$, 0.02 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=166.8,147.3,108.8,93.1,80.9,78.0,72.8,71.2$, 71.1, 65.8, 64.2, 62.7, 51.8, 26.21, 26.15, 25.8, 25.7, 18.6, 18.3, 18.2, 18.0, 17.7, -1.4, -4.0, -4.4, -4.6, -4.65, -4.67, -4.72, -5.25, -5.32 ppm; IR (film): $\tilde{v}=3414,2954,2930,2894,2858,1689,1600,1472$, 1390, 1253, 1113, $1072 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{41} \mathrm{H}_{84} \mathrm{O}_{9} \mathrm{Si}_{5} \mathrm{Na}^{+}$: 883.48639; found: 883.48540.

## (2S,3S,4S)-2-((1S,2R)-2,3-Bis((tert-butyldimethylsilyl)oxy)-1-hydroxypropyl)-3,4-bis((tert-butyl-

 dimethylsilyl)oxy)-7-(hydroxymethyl)-3,4-dihydro-2H,5H-pyrano[4,3-b]pyran-5-one

SPhosAuNTf ${ }^{(10)}$ ( $2.3 \mathrm{mg}, 0.003 \mathrm{mmol}$ ) was added to a solution of 14 ( $220 \mathrm{mg}, 0.26 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.6 \mathrm{~mL})$ and the resulting mixture was stirred for 18 h at room temperature. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography ( $\mathrm{SiO}_{2}$, hexane:EtOAc, $5: 1$ ) afforded the title compound as a white foam ( $160 \mathrm{mg}, 82 \%$ ). $[a]_{\mathrm{D}}^{20}:-45.4$ ( $\mathrm{c}=1, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=6.12(\mathrm{~s}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ (dd, J = 2.5, 1.5 Hz, 1H), 3.84 (dd, J = 8.7, 1.4 Hz, 1H), 3.79 (dd, J=10.5, 3.2 Hz, 1H), 3.75-3.67 (m, 2 H ), $2.45(\mathrm{bs}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}$, $6 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $)^{2}$ : $\delta=166.4$, 164.0, 163.4, 99.0, 97.9, 78.4, 72.6, 71.7, 70.8, 64.1, 64.0, 61.2, 26.2, 26.1, 25.9, 25.7, 18.6, 18.3, 18.2, 18.0, -4.0, -4.4, -4.7, -4.8 (2 C), -5.0, -5.3, -5.4 ppm ; IR (film): $\tilde{v}=3400,2954,2929,2888,2857$, 1721, 1696, 1586, 1472, 1434, 1253, 1111, $1094 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{36} \mathrm{H}_{72} \mathrm{O}_{9} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 783.41499; found: 783.41457.
(2S,3S,4S)-2-((1S,2R)-2,3-Bis((tert-butyldimethylsilyl)oxy)-1-hydroxypropyl)-3,4-bis((tert-butyl-dimethylsilyl)oxy)-5-oxo-3,4-dihydro-2H,5H-pyrano[4,3-b]pyran-7-carbaldehyde (S3). Dess-Martin
 periodinane ( $7 \mathrm{mg}, 0.017 \mathrm{mmol}$ ) was added in one portion to a solution of 15 ( $10 \mathrm{mg}, 0.013 \mathrm{mmol}$ ) in THF ( 0.1 mL ) and the resulting mixture was stirred for 1 h . The reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and the aqueous phase was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography ( $\mathrm{SiO}_{2}$, hexanes:EtOAc, 10:1) afforded the title compound
( $9 \mathrm{mg}, 90 \%$ ) as a white foam. $[a]_{\mathrm{D}}^{20}:-75.6\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.53(\mathrm{~s}, 1 \mathrm{H})$, $6.72(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=2.3,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, \mathrm{J}=8.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=10.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.67(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, $0.89(\mathrm{~s}, 18 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.33(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$, 0.02 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=183.5,164.3,161.8,153.5,108.4,104.8,79.0,72.6$, $71.5,70.7,64.0,63.9,26.2,26.1,25.9,25.6,18.6,18.3,18.2,17.9,-3.9,-4.4,-4.7$ (2 C), $-4.8,-4.9,-5.3$, $-5.4 \mathrm{ppm} ; \operatorname{IR}($ film $): \tilde{v}=3404,2955,2930,2858,1715,1643,1583,1434,1389,1362,1255,1111$, $1067 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{36} \mathrm{H}_{70} \mathrm{O}_{9} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 781.39864; found: 781.39892.
(2S,3S,4S)-2-((1S,2R)-2,3-Bis((tert-butyldimethylsilyl)oxy)-1-hydroxypropyl)-3,4-bis((tert-butyl-dimethylsilyl)oxy)-7-((E)-2-iodovinyl)-3,4-dihydro-2H,5H-pyrano[4,3-b]pyran-5-one (16). A solution
 of $\mathrm{CHI}_{3}$ ( $52 \mathrm{mg}, 0.13 \mathrm{mmol}$ ) in dioxane ( 0.7 mL ) was added dropwise to a suspension of $\mathrm{CrCl}_{2}(50 \mathrm{mg}, 0.41 \mathrm{mmol})$ and aldehyde $\mathbf{S 3}(50 \mathrm{mg}$, $0.066 \mathrm{mmol})$ in THF $(0.7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 1.5 h at $0{ }^{\circ} \mathrm{C}$, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography ( $\mathrm{SiO}_{2}$, hexane:EtOAc, 50:1), affording the title compound as a colorless oil ( 33 mg , $57 \%)$. $[a]_{\mathrm{D}}^{20}:-82.6\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.45(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 4.77-4.72(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=2.3,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82(\mathrm{dd}, \mathrm{J}=8.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.67(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H})$, $0.31(\mathrm{~s}, 3 \mathrm{H}), 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=165.7,163.1,157.1,136.0,101.2,99.5,78.3,78.6,72.7,71.7,70.8,64.1,64.0$, 26.2, 26.1, 25.9, 25.7, 18.6, 18.3, 18.2, 18.0, -3.9, -4.4, -4.6, -4.8 (2C), $-5.0,-5.3,-5.4 \mathrm{ppm}$; IR (film): $\tilde{v}=3398,2954,2929,2895,2858,1726,1642,1597,1471,1426,1254,1145,1112 \mathrm{~cm}^{-1} ;$ HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{37} \mathrm{H}_{71} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{INa}^{+}$: 905.31739; found: 905.31630.
(2E,4E,6E)-7-(Tributylstannyl)hepta-2,4,6-trienal (S4). This reaction was performed in the dark. A solution of $\mathrm{SO}_{3} /$ pyridine ( $556 \mathrm{mg}, 3.49 \mathrm{mmol}$ ) in DMSO $(2.60 \mathrm{~mL})$ was added
 dropwise to a solution of ( $2 E, 4 E, 6 E$ )-7-(tributylstannyl)hepta-2,4,6-trien-1-ol (24) $)^{[2]}(465 \mathrm{mg}, 1.16 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(0.82 \mathrm{~mL}, 5.88 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 3 h before it was concentrated and the residue was purified by flash chromatography ( $\mathrm{SiO}_{2}$, hexanes: $\mathrm{tBuOMe}, 25: 1+2.5 \% \mathrm{NEt}_{3}$ ) to give the title compound as an orange-red oil ( 356 mg , $77 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=9.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dd}, J=15.4,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-$ $6.54(\mathrm{~m}, 3 \mathrm{H}), 6.39(\mathrm{dd}, J=14.1,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=15.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.36-$ $1.26(\mathrm{~m}, 6 \mathrm{H}), 0.97-0.86(\mathrm{~m}, 15 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=193.8,152.6,145.6,145.3$,
144.9, 131.8, 128.6, 29.2, 27.4, 13.9, $9.8 \mathrm{ppm} ; \operatorname{IR}$ (film): $\tilde{v}=2956,2925,1682,1617,1463,1376$, 1290, 1173, 1122, $1012 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{OSnNa}^{+}$: 421.15228; found: 421.15231.

## Tributyl((1E,3E,5E,7E)-8-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)octa-1,3,5,7-tetraen-1-yl)-

stannane (35). This reaction was carried out in the dark. nBuLi ( 1.6 M in hexane, $2.31 \mathrm{~mL}, 3.70 \mathrm{mmol}$ ) was added dropwise to a solution of 2,2-6,6-tetramethylpiperidine
 ( $0.63 \mathrm{~mL}, 3.73 \mathrm{mmol}$ ) in THF $(1.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 30 min . A solution of bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methane (38) (991 mg, 3.70 mmol ) in THF ( 2.6 mL ) was added dropwise and the resulting mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$ before it was cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of S 4 ( $367 \mathrm{mg}, 0.924 \mathrm{mmol}$ ) in THF ( 1.3 mL ) was added dropwise. The suspension was stirred for 6 h at $78{ }^{\circ} \mathrm{C}$, the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes $+2.5 \% \mathrm{NEt}_{3}$ ) afforded the title compound as an orange oil ( $405 \mathrm{mg}, 84 \%$ ). ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=7.05(\mathrm{dd}, J=17.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{dd}, \mathrm{J}=18.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44-6.16(\mathrm{~m}, 5 \mathrm{H}), 5.55(\mathrm{~d}$, $J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.55-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 6 \mathrm{H}), 1.27(\mathrm{~s}, 12 \mathrm{H}), 0.93-0.86(\mathrm{~m}, 15 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=149.8,146.8,138.0,137.5,136.8,134.9,131.4,120.7,83.3,29.2,27.4$, 24.9, 13.9, $9.7 \mathrm{ppm} ;$ IR (film): $\tilde{v}=2956,2925,2852,1614,1582,1541,1387,1358,1322,1269,1144$, $1010 \mathrm{~cm}^{-1}$; HRMS (EI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{47} \mathrm{O}_{2} \mathrm{BSn}^{+}$: 522.26922; found: 522.26904.
(R)-4-Benzyl-3-((R)-2-methylbutanoyl)oxazolidin-2-one (S5). NaHMDS ( $42.8 \mathrm{~mL}, 42.8 \mathrm{mmol}, 1 \mathrm{M}$ in
 THF) was added dropwise to a solution of ( $R$ )-4-benzyl-3-butyryloxazolidin-2-one ${ }^{[6]}$ $(6.22 \mathrm{~g}, 25.15 \mathrm{mmol})$ in THF $(36.7 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 30 min before $\mathrm{CH}_{3} \mathrm{l}$ ( $4.7 \mathrm{~mL}, 75.46 \mathrm{mmol}$ ) was added dropwise. Stirring was continued for 4 h at $-78^{\circ} \mathrm{C}$ before the reaction was quenched with brine and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, 10:1), affording the title compound as a colorless oil ( $5.43 \mathrm{~g}, 83 \%$ ). $[a]_{\mathrm{D}}^{20}:-77.5$ ( $\mathrm{c}=$ $\left.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.37-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 4.73-4.64(\mathrm{~m}, 1 \mathrm{H})$, $4.24-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.64(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=13.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=13.4,9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.84-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $)$ : $\delta=177.3,153.2,135.5,129.6,129.1,127.5,66.1,55.5,39.3,38.0,26.5$, 17.0, 11.8 ppm ; IR (film): $\tilde{v}=2967,2877,1774,1693,1455,1383,1234,1205,1097,1015 \mathrm{~cm}^{-1}$; HRMS (ESI): $m / z$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{NNa}^{+}$: 284.12571; found: 284.12551 .
(R)-2-Methylbutan-1-ol (S6). $\mathrm{LiBH}_{4}(11.41 \mathrm{~g}, 31.27 \mathrm{mmol})$ was added to a solution of $\mathbf{S 5}$ ( 5.97 g ,

$22.85 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(38.4 \mathrm{~mL})$ and $\mathrm{CH}_{3} \mathrm{OH}(3.2 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. The mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ and for another 2 h at room temperature before the reaction was quenched with $\mathrm{NaOH}(1 \mathrm{~m})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the drying agent was filtered off and the solution was concentrated. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane $\left.: \mathrm{Et}_{2} \mathrm{O} 3: 1\right)$, affording the title compound as a colorless oil ( $1.93 \mathrm{~g}, 96 \%$, ee $=89 \%$ ). $[a]_{\mathrm{D}}^{20}:+5.7\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.51(\mathrm{dd}$, $J=10.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=10.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.39-$ 12.7 (bs, 1H), $1.20-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=68.2,37.5,25.9,16.3,11.5 \mathrm{ppm} ; \mathrm{IR}($ film $): \tilde{v}=3330,2960,2920,2876,1462$, 1380, 1043, $1015 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{ONa}^{+}$: 88.08882; found: 88.08885.
(R)-1-lodo-2-methylbutane (ent-21). Iodine ( $10.54 \mathrm{~g}, 41.5 \mathrm{mmol}$ ) was added to a solution of imidazole ( $2.83 \mathrm{~g}, 41.5 \mathrm{mmol}$ ) and $\mathrm{PPh}_{3}(10.89 \mathrm{~g}, 41.52 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(66 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 10 min . A solution of $\mathbf{S 6}(3.05 \mathrm{~g}, 34.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 33 mL ) was added dropwise and stirring was continued for 3 h . The mixture was diluted with pentane ( 100 mL ), the suspension was vigorously stirred for 5 min and filtered through a plug of silica. The filtrate was concentrated cautiously. The residue was again diluted with pentane and filtered through a plug of silica, affording the title compound as a colorless oil ( $5.07 \mathrm{~g}, 74 \%$ ). $[a]_{\mathrm{D}}^{20}$ : $-9.4\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.23(\mathrm{dd}, J=9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=9.6,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13}$ C NMR (101 MHz, CDCl ${ }_{3}$ ): $\delta=36.5,29.3,20.3,17.7,11.5 \mathrm{ppm}$. IR (film): $\tilde{v} 2960,29263,2874,1455$, 1378, $1191 \mathrm{~cm}^{-1}$; HRMS (EI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{5} \mathrm{H}_{11}$ I: 197.99055; found: 197.99039.
(2R,4S)-N-((1S,2S)-1-Hydroxy-1-phenylpropan-2-yl)-N,2,4-trimethylhexanamide (S7). nBuLi (1.6 M in
 hexane, $27.2 \mathrm{~mL}, 43.6 \mathrm{mmol}$ ) was added dropwise to a solution of $i \mathrm{Pr}_{2} \mathrm{NH}$ $(6.4 \mathrm{~mL}, 45.9 \mathrm{mmol})$ and $\mathrm{LiCl}(5.83 \mathrm{~g}, 42.4 \mathrm{mmol})$ in THF $(15.5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was warmed to $0^{\circ} \mathrm{C}$, stirred for 15 min , and then re-cooled to $-78{ }^{\circ} \mathrm{C}$. A precooled $\left(0^{\circ} \mathrm{C}\right)$ solution of N -((1S,2S)-1-hydroxy-1-phenylpropan-2-yl)-N-methylpropionamide ${ }^{[4]}$ ( $5.1 \mathrm{~g}, 22.93 \mathrm{mmol}$ ) in THF ( 77.5 mL ) was added dropwise and stirring was continued for 1 h at $-78{ }^{\circ} \mathrm{C}$, before the mixture was warmed to $0^{\circ} \mathrm{C}$. (S)-1-iodo-2-methylbutane ${ }^{[3]}$ ( $2.2 \mathrm{~g}, 11.0 \mathrm{mmol}$ ) was added dropwise and stirring continued for 18 h at room temperature. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the aqueous phase was extracted with EtOAc , and the combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography ( $\mathrm{SiO}_{2}$, hexane:EtOAc, 3:2), affording the title compound as a colorless oil ( $2.35 \mathrm{~g}, 74 \%$ ). $[a]_{\mathrm{D}}^{20}:+76.3$ ( $\mathrm{c}=1.04, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR
( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, signals of the major conformer): $\delta=7.41-7.22(\mathrm{~m}, 5 \mathrm{H}), 4.62(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.36(\mathrm{bs}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.60(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.19(\mathrm{~m}, 5 \mathrm{H}), 1.18-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}, \mathrm{~J}=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the major conformer: $\delta=179.7,142.8,128.4,127.6,126.4,76.7,59.6,40.8$, 34.3, 33.3, $32.1,29.8,19.1,17.1,14.6,11.4 \mathrm{ppm} ; \operatorname{IR}$ (film): $\tilde{v}=3370,2961,2931,2874,1615,1453$, 1408, 1376, 1112, 1084, $1049 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{NNa}^{+}: 314.20905$; found: 314.20922.

The analytical data of (2S,4R)-N-((1R,2R)-1-hydroxy-1-phenylpropan-2-yl)-N,2,4trimethylhexanamide (ent-S7) are identical; $[a]_{\mathrm{D}}^{20}:-75.6\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$.
(2S,4S)-N-((1R,2R)-1-Hydroxy-1-phenylpropan-2-yl)-N,2,4-trimethylhexanamide (S8). Prepared using $\mathrm{N}-((1 R, 2 R)$-1-hydroxy-1-phenylpropan-2-yl)-N-methyl3.25 mmol ), $n$ BuLi ( 1.6 M in hexane, $8.05 \mathrm{~mL}, 12.88 \mathrm{mmol}$ ), $\mathrm{LiCl}(1.72 \mathrm{~g}, 40.67 \mathrm{mmol}), i \mathrm{Pr}_{2} \mathrm{NH}$ $(1.95 \mathrm{~mL}, 13.90 \mathrm{mmol})$ in THF ( 28 mL ). Yield: $750 \mathrm{mg}, 79 \% .[a]_{\mathrm{D}}^{20}:-60.7$ (c = 1, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, signals of the major conformer): $\delta=7.41-7.27(\mathrm{~m}, 5 \mathrm{H}), 4.61(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.38(\mathrm{bs}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.61(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{ddd}, \mathrm{J}=5.2,8.5,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.46-1.19(\mathrm{~m}$, $3 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.08-1.00(\mathrm{~m}, 2 \mathrm{H}), 1.06(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.77$ $(\mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of the major conformer: $\delta=179.4,142.8,128.4$, 127.6, 126.4, $76.6,59.5,41.3,34.3,33.5,32.1,29.8,19.3,18.1,14.6,11.3 \mathrm{ppm}$; IR (film): $\tilde{v}=3372$, 2961, 2930, 2874, 1616, 1453, 1408, 1376, 1303, 1111, 1083, $1050 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{NNa}^{+}: 314.20905 ;$ found: 314.20919.

The analytical data of (2R,4R)-N-((1S,2S)-1-hydroxy-1-phenylpropan-2-yl)-N,2,4-trimethylhexanamide (ent-S8) are identical; $[a]_{\mathrm{D}}^{20}:+63.2\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$.
(2R,4S)-2,4-Dimethylhexan-1-ol (2R,4S-22). nBuLi (1.6 M in hexane, $4.00 \mathrm{~mL}, 6.33 \mathrm{mmol}$ ) was added dropwise to a solution of $i \mathrm{Pr}_{2} \mathrm{NH}(0.96 \mathrm{~mL}, 6.82 \mathrm{mmol})$ in $\mathrm{THF}(8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 10 min before $\mathrm{BH}_{3} \cdot \mathrm{NH}_{3}(200 \mathrm{mg}, 6.49 \mathrm{mmol})$ was added in one portion. Stirring was continued for 15 min at $0^{\circ} \mathrm{C}$ and 15 min at ambient temperature. After recooling to $0^{\circ} \mathrm{C}$, a solution of $\mathbf{S 7}(473 \mathrm{mg}, 1.62 \mathrm{mmol})$ in THF ( 5 mL ) was added dropwise and the mixture was stirred at room temperature for 3 h . The reaction was quenched cautiously at $0{ }^{\circ} \mathrm{C}$ with $\mathrm{HCl}(3 \mathrm{~m})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with $\mathrm{HCl}(3 \mathrm{~m}), \mathrm{NaOH}(2 \mathrm{M})$ and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. The crude product was purified by flash chromatography ( $\mathrm{SiO}_{2}$, hexane:EtOAc, 4:1), affording the title compound as a colorless oil ( $210 \mathrm{mg}, 99 \%$ ). $[a]_{\mathrm{D}}^{20}:+32.2$ (c = 1, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.52-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.37(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.37(\mathrm{~m}$, $1 \mathrm{H}), 1.34-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.03(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=69.3,40.3,33.3,31.6,30.6,19.0,16.4,11.6 \mathrm{ppm} ; \mathrm{IR}$ (film): $\tilde{v}=3322,2959,2914,2874,1462,1378,1079,1032988 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{8} \mathrm{H}_{19} \mathrm{ONa}^{+}$: 131.14359; found: 131.14347.

The analytical data of $(2 S, 4 R)$-2,4-dimethylhexan-1-ol $(2 S, 4 R-22)$ are identical; $[a]_{\mathrm{D}}^{20}:+28.9$ ( $\mathrm{c}=1.06$, $\mathrm{CHCl}_{3}$ ).
(2S,4S)-2,4-Dimethylhexan-1-ol (2S,4S-22). Prepared analogously using S8 ( $200 \mathrm{mg}, 0.69 \mathrm{mmol}$ )
 $\mathrm{BH}_{3} \cdot \mathrm{NH}_{3}$ ( $85 \mathrm{mg}, 2.75 \mathrm{mmol}$ ) nBuLi ( 1.6 M in hexane, $1.7 \mathrm{~mL}, 2.68 \mathrm{mmol}$ ), $i \mathrm{Pr}_{2} \mathrm{NH}$ ( $0.40 \mathrm{~mL}, 2.88 \mathrm{mmol}$ ) and THF ( 5 mL ). Yield: $67 \mathrm{mg}, 75 \% .[a]_{\mathrm{D}}^{20}:-2.2\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right.$ ); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=3.56-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.33(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.47-$ $1.25(\mathrm{~m}, 4 \mathrm{H}), 1.12-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.97-0.89(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $0.86(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=68.5,40.7,33.2,31.6,29.1,19.9,17.4$, 11.3 ppm ; IR (film): $\tilde{v}=3322,2957,2914,2874,1461,1378,1029 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{8} \mathrm{H}_{19} \mathrm{ONa}^{+}: 131.14359 ;$ found: 131.14367.

The analytical data of (2R,4R)-2,4-dimethylhexan-1-ol ( $\mathbf{2 R}, \mathbf{4 R} \mathbf{- 2 2}$ ) are identical; $[a]_{\mathrm{D}}^{20}:+3.6$ (c=1.16, $\mathrm{CHCl}_{3}$ ).
(4R,6S)-4,6-Dimethyloct-2-yn-1-ol (4R,6S-23). DMSO ( $2.73 \mathrm{~mL}, 38.39 \mathrm{mmol}$ ) was added dropwise to
 a solution of $(\mathrm{COCl})_{2}(1.85 \mathrm{~mL}, 21.50 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 15 min . A solution of $\mathbf{4 R}, 6 \mathrm{~S}-22(2.00 \mathrm{~g}$, $15.35 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ was added dropwise and stirring was continued for 30 min . $\mathrm{NEt}_{3}$ $(10.70 \mathrm{~mL}, 76.78 \mathrm{mmol})$ was added dropwise at $-78^{\circ} \mathrm{C}$, the mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirring was continued for 45 min . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the drying agent was filtered off and the solvent was evaporated (bath temperature below $10^{\circ} \mathrm{C}$ ). The crude aldehyde was used without further purification.

A solution of $\mathrm{CBr}_{4}(9.32 \mathrm{~g}, 28.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added dropwise to a solution of $\mathrm{PPh}_{3}$ $(14.54 \mathrm{~g}, 55.44 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 15 min . A solution of the crude aldehyde in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise and stirring was continued for 15 min at $0^{\circ} \mathrm{C}$ and for 2.5 h at ambient temperature. For work up, the mixture was poured onto $\mathrm{Et}_{2} \mathrm{O} /$ hexanes ( $4: 1,100 \mathrm{~mL}$ ), the biphasic mixture was stirred for 10 min and filtered through a pad of Florisil ${ }^{\circledR}$. The filtrate was evaporated, the residue was dispersed in hexanes and the suspension
filtered through Florisil ${ }^{\circledR}$. The filtrate was concentrated to give the crude dibromoolefin that was used without further purification.
$n$ BuLi ( 1.6 M in hexane, $19.01 \mathrm{~mL}, 64.06 \mathrm{mmol}$ ) was added dropwise to a solution of the crude dibromoolefin in THF ( 29.4 mL ) at $-78^{\circ} \mathrm{C}$. The mixture was warmed to room temperature, stirred for 30 min and then re-cooled to $-78^{\circ} \mathrm{C}$. para-Formaldehyde ( $2.17 \mathrm{~g}, 72.43 \mathrm{mmol}$ ) was added in one portion and stirring was continued for 18 h while warming to room temperature. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane:tBuOMe, 10:1) afforded the title compound as a colorless oil (1.27 g, 54\%). [a] $]_{\mathrm{D}}^{20}:-20.6$ (c = 1, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=4.26(\mathrm{dd}, J=6.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.48(\mathrm{ht}, \mathrm{J}=6.8,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.59-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.14-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=91.5,78.2,51.6,44.1,32.1,28.8,23.7,21.1,19.4,11.2 \mathrm{ppm} ; \operatorname{IR}($ film $): \tilde{v}=3317,2962$, 2917, 2874, 1455, 1377, 1333, 1172, $1075 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{ONa}^{+}$: 177.12498; found: 177.12499.

The analytical data of (4S,6R)-4,6-dimethyloct-2-yn-1-ol (4S,6R-23) are identical; $[a]_{\mathrm{D}}^{20}:+18.0$ ( $\mathrm{c}=1.28, \mathrm{CHCl}_{3}$ ).
(4S,6S)-4,6-Dimethyloct-2-yn-1-ol (4S,6S-23). Prepared analogously (3.81 g, 51\%). $[a]_{\mathrm{D}}^{20}:+38.0$ (c = $\left.1.24, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.25(\mathrm{dd}, J=5.3,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-$
$2.46(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.15$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=91.0,78.5,51.6,44.1,32.5,30.1,23.9,21.8,18.8,11.4 \mathrm{ppm}$; $\operatorname{IR}($ film $): \tilde{v}=3325$, 2962, 2925, 2874, 1460, 1378, 1328, 1226, 1171, $1076 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{ONa}^{+}: 177.12498 ;$ found: 177.12516.

The analytical data of (4R,6R)-4,6-dimethyloct-2-yn-1-ol (4R,6R-23) are identical; $[a]_{\mathrm{D}}^{20}:-32.0$ ( $c=1.1, \mathrm{CHCl}_{3}$ ).
(4R,6S,Z)-4,6-Dimethyl-2-(prop-1-yn-1-yl)oct-2-en-1-ol (4R,6S-26). Ethyl-3,3,3-trifluoropyruvate
 $(0.93 \mathrm{~mL}, 7.02 \mathrm{mmol})$ was added dropwise to a solution of $\mathbf{4 R}, 6 S-23$ ( 900 mg , 5.83 mmol ) in THF ( 6.4 mL ) and the resulting mixture was stirred for 30 min at room temperature before it was cooled to $-78^{\circ} \mathrm{C}$. Thexylborane $(7.50 \mathrm{~mL}$, $7.00 \mathrm{mmol}, 0.93 \mathrm{M}$ in THF$)^{[8]}$ was added dropwise. The mixture was stirred for 10 min at $-78{ }^{\circ} \mathrm{C}$ before
it was warmed to room temperature. Trimethylamine $N$-oxide ( $681 \mathrm{mg}, 6.13 \mathrm{mmol}$ ) was added in one portion and stirring was continued for 30 min . Next, aq. $\mathrm{KOH}(14.6 \mathrm{~mL}, 43.8 \mathrm{mmol}, 3 \mathrm{M}$ in water) was added, followed by 1-iodo-1-propyne ${ }^{[7]}(4.85 \mathrm{~g}, 29.22 \mathrm{mmol})$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ( $477 \mathrm{mg}, 0.58 \mathrm{mmol}$ ). The resulting mixture was heated to $70^{\circ} \mathrm{C}$ for 1.5 h before it was allowed to cool to room temperature. The aqueous phase was extracted with $t \mathrm{BuOMe}$ and the combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography ( $\mathrm{SiO}_{2}$, hexanes:EtOAc, 20:1) afforded the title compound as pale orange oil ( $645 \mathrm{mg}, 57 \%$ ). $[a]_{\mathrm{D}}^{20}:-36.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.67(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.06(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.44(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H})$, $1.71 \mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.39-1.18(\mathrm{~m}, 3 \mathrm{H}), 1.12-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87-0.79(\mathrm{~m}$, $6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=145.3,121.2,85.3,79.1,60.4,44.4,32.0,30.4,29.2,20.9$, 19.6, 11.3, 4.4 ppm ; IR (film): $\tilde{v}=3395,2956,2916,2873,1456,1377,1258,1046,992,971 \mathrm{~cm}^{-1}$; HRMS (ESI): $m / z$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{ONa}^{+}$: 217. 15628; found: 217.15627.

The analytical data of (4S,6R,Z)-4,6-dimethyl-2-(prop-1-yn-1-yl)oct-2-en-1-ol (4S,6R-26) are identical; $[a]_{\mathrm{D}}^{20}:+45.5\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$.
(4S,6S,Z)-4,6-Dimethyl-2-(prop-1-yn-1-yl)oct-2-en-1-ol (4S,6S-26). Prepared analogously (597 mg, $57 \%) .[a]_{\mathrm{D}}^{20}:+44.7\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.23(\mathrm{~d}, \mathrm{~J}=10.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-2.50(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.70 \mathrm{t}, \mathrm{J}=5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.31-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.15-1.05(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=145.0,121.7,85.3,79.2$, 60.5, 44.6, 32.3, 30.6, 30.2, 21.8, 19.0, 11.4, 4.4 ppm ; IR (film): $\tilde{v}=3390,2917,2873,1458,1377$, 1264, $1002 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{ONa}^{+}$: 217.15628; found: 217.15638.

The analytical data of (4R,6R,Z)-4,6-dimethyl-2-(prop-1-yn-1-yl)oct-2-en-1-ol (4R,6R-26) are identical; $[a]_{\mathrm{D}}^{20}:-46.3$ ( $\mathrm{c}=1, \mathrm{CHCl}_{3}$ ).
(4R,6S,Z)-2-((E)-2-(Dimethyl(phenyl)silyl)prop-1-en-1-yl)-4,6-dimethyloct-2-en-1-ol
(4R,6S-27).
 PhMe ${ }_{2} \mathrm{SiLi}\left(3.30 \mathrm{~mL}, 3.30 \mathrm{mmol}, 1 \mathrm{M}\right.$ in THF) ${ }^{[9]}$ was added dropwise to a suspension of CuCN ( $127 \mathrm{mg}, 1.42 \mathrm{mmol}$ ) in THF ( 1.10 mL ) at $-50^{\circ} \mathrm{C}$. The mixture was warmed to $-10^{\circ} \mathrm{C}$, stirred for 45 min and then re-cooled to $-50^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}(72 \mu \mathrm{~L}$, 4.00 mmol ) was added, the solution was warmed to $-10^{\circ} \mathrm{C}$, stirred for 30 min and re-cooled to $-50^{\circ} \mathrm{C}$. A solution of $\mathbf{4 R}, 6 \mathrm{~S}-26(110 \mathrm{mg}, 0.57 \mathrm{mmol})$ in THF $(1.10 \mathrm{~mL})$ was added dropwise and the mixture stirred at $-10^{\circ} \mathrm{C}$ for 2 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted with $t \mathrm{BuOMe}$, the combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude
product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes: $\mathrm{EtOAc}, 1: 0$ to $\left.30: 1\right)$ afforded the title compound as a colorless oil (165 mg, 88\%). [a] ${ }_{\mathrm{D}}^{20}:-48.7\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.55-7.49(\mathrm{~m}$, $2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 3 \mathrm{H}), 6.26(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.28(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{dq}, J$ $=9.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.86,(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{bs}, 1 \mathrm{H}), 1.42-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 1 \mathrm{H}), 1.13$ $-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 6 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=140.9,139.4,138.4,138.1,134.3,134.1,129.1,127.89,127.88$, $61.0,45.0,32.1,30.2,29.3,21.5,19.7,16.7,11.3,-3.3 \mathrm{ppm}$; IR (film): $\tilde{v}=3344,2957,2925,1597$, 1460, 1427, 1376, 1247, 1111, 1016, $\mathrm{cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{OSiNa}^{+}: 353.22711$; found: 353.22706

The analytical data of (4S,6R,Z)-2-((E)-2-(dimethyl(phenyl)silyl)prop-1-en-1-yl)-4,6-dimethyloct-2-en-1-ol (4S,6R-27) are identical; $[a]_{\mathrm{D}}^{20}:+38.7\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$.
(4S,6S,Z)-2-((E)-2-(Dimethyl(phenyl)silyl)prop-1-en-1-yl)-4,6-dimethyloct-2-en-1-ol
(4S,6S-27).
 Prepared analoguously (107 mg, 90\%). [a] $]_{\mathrm{D}}^{20}:+76.2$ (c $=1, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 3 \mathrm{H}), 6.26(\mathrm{t}, \mathrm{J}=$ $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 2.71-2.58(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.58-$ $1.53(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.14-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95-0.88(\mathrm{~m}, 2 \mathrm{H})$, $0.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=140.6$, $139.4,138.4,138.1,134.7,134.2,129.1,127.9,61.0,44.9,32.5,30.4,30.3,22.5,19.2,16.8,11.5,-3.3$ ppm; IR (film): $\tilde{v}=3355,2957,2925,1459,1427,1377,1247,1111,1015 \mathrm{~cm}^{-1} ;$ HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{34} \mathrm{OSiNa}^{+}$: 353.22711 ; found: 353.22713 .

The analytical data of (4R,6R,Z)-2-((E)-2-(dimethyl(phenyl)silyl)prop-1-en-1-yl)-4,6-dimethyloct-2-en-1-ol (4R,6R-27) are identical; $[a]_{\mathrm{D}}^{20}:-43.9$ (c $\left.=1, \mathrm{CHCl}_{3}\right)$.
(4R,6S,Z)-2-((E)-2-(Dimethyl(phenyl)silyl)prop-1-en-1-yl)-4,6-dimethyloct-2-enal (4R,6S-S9). Dess-
 Martin periodinane ( $308 \mathrm{mg}, 0.73 \mathrm{mmol}$ ) was added in one portion to a solution of $\mathbf{4 R}, 6 S-27(160 \mathrm{mg}, 0.48 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.8 \mathrm{~mL})$ and the resulting mixture was stirred for 1.5 h before the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The aqueous phase was extracted with $t \mathrm{BuOMe}$, the combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography ( $\mathrm{SiO}_{2}$, hexanes:EtOAc, 50:1) afforded the title compound (155 mg, 98\%). [a $]_{\mathrm{D}}^{20}:-34.2\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.13(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}$, $2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 3 \mathrm{H}), 6.44(\mathrm{t}, \mathrm{J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dd}, \mathrm{J}=11.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.31(\mathrm{~m}, 1 \mathrm{H})$, $1.75(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.46-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.27-1.08(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=6.1$ $\mathrm{Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=191.0,158.2,140.4$,
138.0, 135.3, 134.2, 133.6, 129.1, 127.9, 44.6, 32.1, 29.4, 29.1, 21.4, 19.6, 16.9, 11.2, $-3.4 \mathrm{ppm} ;$ IR (film): $\tilde{v}=2960,2928,2874,1682,1603,1457,1376,1428,1248,1111 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{OSiNa}^{+}$: 351. 21146; found: 351.21161 .

The analytical data of (4S,6R,Z)-2-((E)-2-(dimethyl(phenyl)silyl)prop-1-en-1-yl)-4,6-dimethyloct-2enal (4S,6R-S9) are identical; $[a]_{\mathrm{D}}^{20}:+32.2\left(\mathrm{c}=0.97, \mathrm{CHCl}_{3}\right)$.

## (4S,6S,Z)-2-((E)-2-(Dimethyl(phenyl)silyl)prop-1-en-1-yl)-4,6-dimethyloct-2-enal

(4S,6S-S9).


Prepared analogously ( $55 \mathrm{mg}, 92 \%$ ). $[a]_{\mathrm{D}}^{20}:+45.2$ ( $\mathrm{c}=1, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=10.13(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}$, $3 \mathrm{H}), 6.45(\mathrm{dd}, J=1.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=11.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.30(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.43-1.14(\mathrm{~m}, 5 \mathrm{H}), 1.12(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.40(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=191.0,158.0,140.4,138.0,135.8,134.2,133.6$, 129.1, 127.9, 44.6, 32.6, 30.2, 29.5, 22.3, 19.1, 16.9, 11.4, -3.43, -3.45 ppm; IR (film): $\tilde{v} 2959,2926$, 2873, 1681, 1459, 1428, 1377, 1248, 1191, $1111 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{OSiNa}^{+}: 351$. 21146; found: 351.21153.

The analytical data of (4R,6R,Z)-2-((E)-2-(dimethyl(phenyl)silyl)prop-1-en-1-yl)-4,6-dimethyloct-2enal ( $4 R, 6 R-S 9$ ) are identical; $[a]_{\mathrm{D}}^{20}:-48.4\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$.

2-(Trimethylsilyl)ethyl (4R,6S,Z)-2-((E)-2-(dimethyl(phenyl)silyl)prop-1-en-1-yl)-4,6-dimethyloct-2enoate (4R,6S-28). $\mathrm{NaH}_{2} \mathrm{PO}_{4}(170 \mathrm{mg}, 1.42 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(0.26 \mathrm{~mL}, 2.68 \mathrm{mmol}, 35 \%$ in water) were
 added to a solution of $\mathbf{4 R}, \mathbf{6 S}-\mathbf{S 9}(155 \mathrm{mg}, 0.47 \mathrm{mmol})$ in $t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O} 1: 1$ $(1.6 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 5 min before $\mathrm{NaClO}_{2}$ ( $256 \mathrm{mg}, 2.26 \mathrm{mmol}$ ) was added. Stirring was continued for 16 h before the reaction was quenched with water and the aqueous phase was extracted with pentane. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off, the solution was concentrated and the residue used without further purification.

DEAD ( $0.31 \mathrm{~mL}, 1.65 \mathrm{mmol}$ ) was added dropwise to a solution of the crude acid, $\mathrm{PPh}_{3}$ ( 495 mg , $1.89 \mathrm{mmol})$ and 2-(TMS)-ethanol ( $0.25 \mathrm{~mL}, 1.66 \mathrm{mmol}$ ) in THF ( 2.4 mL ) at $0^{\circ} \mathrm{C}$ within 15 min and the resulting mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography ( $\mathrm{SiO}_{2}$, hexanes to hexanes:EtOAc, 200:1) afforded the title compound as a colorless oil ( $132 \mathrm{mg}, 63 \%$ ). $[a]_{\mathrm{D}}^{20}:-18.4$ ( $\mathrm{c}=1, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ : $\delta=7.57-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.33(\mathrm{dd}, \mathrm{J}=1.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dd}, \mathrm{J}=10.2,0.9 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.29-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.06-2.89(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.22$ $(\mathrm{m}, 1 \mathrm{H}), 1.20-1.01(\mathrm{~m}, 4 \mathrm{H}), 0.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, 0.37 (s, 6H), $0.05(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=168.8,149.1,138.2,137.5,136.5,134.2$, 129.6, 129.1, 127.9, 44.5, 32.1, 31.5, 29.3, 20.7, 19.6, 17.5, 16.3, 11.3, -1.4, -3.4 ppm; IR (film): $\tilde{v}=$ 2956, 1717, 1428, 1249, 1203, 1167, $1111 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Na}^{+}$: 467.27721; found: 467.27751.

The analytical data of 2-(trimethylsilyl)ethyl (4S,6R,Z)-2-((E)-2-(dimethyl(phenyl)silyl)prop-1-en-1-yl)-4,6-dimethyloct-2-enoate (4S,6R-28) are identical; $[a]_{D}^{20}:+19.5$ ( $c=1, \mathrm{CHCl}_{3}$ ).

2-(Trimethylsilyl)ethyl (4S,6S,Z)-2-((E)-2-(dimethyl(phenyl)silyl)prop-1-en-1-yl)-4,6-dimethyloct-2enoate (4S,6S-28). Prepared analogously (42 mg, 62\%). [a $]_{\mathrm{D}}^{20}:+26.4\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$,
 $\left.\mathrm{CDCl}_{3}\right): \delta=7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 3 \mathrm{H}), 6.33(\mathrm{~d}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.57(d, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.95(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~d}, \mathrm{~J}$ $=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 4 \mathrm{H}), 1.20-1.05(\mathrm{~m}, 3 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=168.8,148.8,138.2,137.5,136.4,134.2,130.1,129.1,127.9,62.9,44.8,32.6,31.6,30.2$, 21.6, 19.2, 17.5, 16.3, 11.4, -1.4, -3.4 ppm; IR (film): $\tilde{v}=2956,2902,1717,1460,1428,1378,1249$, 1204, 1167, $1111 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{26} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Na}^{+}$: 467.27721; found: 467.27751 .

The analytical data of 2-(trimethylsilyl)ethyl (4R,6R,Z)-2-((E)-2-(dimethyl(phenyl)silyl)prop-1-en-1-yl)-4,6-dimethyloct-2-enoate (4R,6R-28) are identical; $[a]_{\mathrm{D}}^{20}:-33.5$ ( $\mathrm{c}=1, \mathrm{CHCl}_{3}$ ).

2-(Trimethylsilyl)ethyl (4R,6S,Z)-2-((E)-2-iodoprop-1-en-1-yl)-4,6-dimethyloct-2-enoate (4R,6S-29).
 NIS ( $83 \mathrm{mg}, 0.37 \mathrm{mmol}$ ) was added in one portion to a solution of $\mathbf{4 R}, \mathbf{6 S} \mathbf{- 2 8}$ ( $110 \mathrm{mg}, \quad 0.25 \mathrm{mmol}$ ) and 2,6 -lutidine $(43 \mu \mathrm{~L}, 0.37 \mathrm{mmol})$ in hexafluoroisopropanol $(0.8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 2 min . The reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and the aqueous phase extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes to hexanes:EtOAc, 200:1) afforded the title compound as a colorless oil (96 mg, 89\%). [a $]_{\mathrm{D}}^{20}:-14.2$ ( $\mathrm{c}=1, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.80(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.68 (dd, $J=10.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-$ $1.21(\mathrm{~m}, 3 \mathrm{H}), 1.17-1.07(\mathrm{~m}, 2 \mathrm{H}), 1.07-1.01(\mathrm{~m}, 2 \mathrm{H}), 0.98(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $0.83(\mathrm{t}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.7,151.7,138.5,128.3$, 98.1, 63.1, 44.3, 32.2, 31.4, 29.3, 29.0, 20.4, 19.5, 17.5, 11.3, -1.4 ppm; IR (film): $\tilde{v}=2955,2923$,

2874, 1718, 1456, 1378, 1250, 1205, 1166, $1068 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{SilNa}^{+}$: 459.11868 ; found: 459.11850 .

The analytical data of 2-(trimethylsilyl)ethyl (4S,6R,Z)-2-((E)-2-iodoprop-1-en-1-yl)-4,6-dimethyloct-2-enoate (4S,6R-29) are identical; $[a]_{\mathrm{D}}^{20}:+16.8\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$.

2-(Trimethylsilyl)ethyl (4S,6S,Z)-2-((E)-2-iodoprop-1-en-1-yl)-4,6-dimethyloct-2-enoate (4S,6S-29).


Prepared analoguously ( $96 \mathrm{mg}, 89 \%$ ). $[a]_{\mathrm{D}}^{20}:+24.4$ (c = $1, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.80(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dd}, \mathrm{J}=10.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ $-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.22(\mathrm{~m}, 3 \mathrm{H})$, $1.16-1.08(\mathrm{~m}, 2 \mathrm{H}), 1.06-1.01(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm}{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.7,151.4,138.5,128.8,98.1,63.1,44.6$, 32.7, 31.5, 30.2, 29.0, 21.2, 19.2, 17.5, 11.5, -1.4 ppm; IR (film): $\tilde{v}=2956,2923,2874,1718,1459$, 1378, 1250, 1205, 1166, $1068 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{2} \mathrm{SilNa}^{+}$: 459.11868; found: 459.11908.

The analytical data of 2-(trimethylsilyl)ethyl (4R,6R,Z)-2-((E)-2-iodoprop-1-en-1-yl)-4,6-dimethyloct-
2-enoate ( $4 R, 6 R-29$ ) are identical; $[a]_{\mathrm{D}}^{20}:-22.3\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right)$.

Compound $(S, R)-37$. This reaction was performed in the dark. $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(0.2 \mathrm{mg}, 0.0007 \mathrm{mmol})$
 was added to a degassed (pump and freeze, 3 cycles) solution of $\mathrm{Ph}_{3} \mathrm{As}(0.45 \mathrm{mg}$, 0.0015 mmol ) and flame dried $\left[\mathrm{Ph}_{2} \mathrm{O}_{2} \mathrm{P}\right]\left[\mathrm{NBu}_{4}\right](14 \mathrm{mg}, 0.0305 \mathrm{mmol})^{[11]}$ in
DMF ( 0.1 mL ). The resulting mixture was stirred for 5 min before it was transferred to a Schlenk tube containing alkenyl iodide $4 S, 6 R-29(6 \mathrm{mg}, 0.0137 \mathrm{mmol})$ and tetraene $35(7 \mathrm{mg}, 0.0134 \mathrm{mmol})$. The mixture was stirred for 20 h at room temperature. aq. $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}, 3.5 \mu \mathrm{~L}, 0.0105 \mathrm{mmol})$ was added in one portion and the mixture was stirred for 5 min before a degassed (pump and freeze, 3 cycles) solution of alkenyl iodide $16(6 \mathrm{mg}, 0.0068 \mathrm{mmol})$ in THF ( 0.1 mL ) was added, followed by $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ $(0.6 \mathrm{mg}, 0.0007 \mathrm{mmol})$. The suspension was stirred for 18 h before the reaction was quenched with water. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$, the drying agent was filtered off and the solvent was evaporated (below $25^{\circ} \mathrm{C}$ ). Purification of the crude product by flash chromatography ( $\mathrm{SiO}_{2}$, pentane $+2.5 \% \mathrm{NEt}_{3}$ ) afforded the title compound ( $4.4 \mathrm{mg}, 55 \%$ ) as a red oil. $[a]_{\mathrm{D}}^{20}:-142$ (c $=0.1, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H} \mathrm{NMR}$ ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.16$ (dd, $\left.J=15.1,11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.52$, ( $\mathrm{dd}, \mathrm{J}=14.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $6.46-6.27(\mathrm{~m}$, $7 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.66(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}$, $1 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.22(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{t}, \mathrm{J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.76-3.68(\mathrm{~m}, 2 \mathrm{H})$,
$3.09-2.94(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.09(\mathrm{~m}, 3 \mathrm{H}), 1.08-1.02(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90-0.87(\mathrm{~m}, 18 \mathrm{H}), 0.87-0.80(\mathrm{~m}, 15 \mathrm{H}), 0.33(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.15$ - $0.12(\mathrm{~m}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07-0.02(\mathrm{~m}, 15 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl $\left.)^{2}\right): \delta=$ $168.4,166.2,163.8,158.7,149.8,139.4,138.8,136.6,136.1,135.7,135.5,132.7,132.3,131.2,130.5$, 129.6, $128.8121 .8,100.9,98.3,78.4,72.8,71.9,70.9,64.2,64.1,63.1,32.2,31.8,29.3,26.2,26.1$, $25.9,25.7,20.7,19.6,18.6,18.4,18.3,18.0,17.6,13.7,11.3,-1.4,-3.9,-4.4,-4.6,-4.75,-4.78,-4.9,-$ 5.27, -5.34 ppm ; IR (film): $\tilde{v}=2955,2925,2869,2854,1721,1460,1377,1251,1188,1082 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z$ calcd. for $\mathrm{C}_{63} \mathrm{H}_{112} \mathrm{O}_{10} \mathrm{Si}_{5} \mathrm{Na}^{+}$: 1191.69941; found: 1191.70067.

Compound (S,R)-1. This reaction was performed in the dark. A solution of TASF ( $8 \mathrm{mg}, 0.029 \mathrm{mmol}$ ) in


DMF ( $40 \mu \mathrm{~L}$ ) was added to a solution of $(S, R)$ $37(3 \mathrm{mg}, 0.0026 \mathrm{mmol})$ in DMF $(40 \mu \mathrm{~L})$ at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 16 h at room temperature. The reaction was quenched with aq. $\mathrm{HCl}(\mathrm{pH}=3)$ and the aqueous phase was extracted with EtOAc. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the drying agent was filtered off and the solution was concentrated. The crude product was purified by HPLC (column: 150 mm YMC Actus, $\varnothing=20 \mathrm{~mm}$; stationary phase: YMC ODS-A $5 \mu \mathrm{~m}, 2015000456$; mobile phase: methanol/TFA in water $\mathrm{pH} 3.5=80: 20$ ) to give the title compound as an orange solid ( $1 \mathrm{mg}, 64 \%$ ). $[a]_{\mathrm{D}}^{20}:-124(\mathrm{c}=0.05, \mathrm{DMSO}) ;{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$-DMSO): see Table S-5; ${ }^{13} \mathrm{C}$ NMR ( $150 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-$ DMSO): see Table S-4; IR (film): $\tilde{v}=3375,2940,2915,2824,1657,1436,1407,1313,1018,952 \mathrm{~cm}^{-1}$; HRMS (ESI): $m / z$ calcd. for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{O}_{10}{ }^{-}$: 611.28618; found: 611.28573.

Compound (S,S)-1. Prepared analogously as an orange-red solid after purification by HPLC (Column:


150 mm YMC Actus, $\varnothing=20 \mathrm{~mm}$; stationary phase: YMC ODS-A $5 \mu \mathrm{~m}, 2015000456$; mobile phase: $\mathrm{MeOH}:$ TFA in water $\mathrm{pH} 3.5=$ 80:20). $[a]_{\mathrm{D}}^{20}:-82\left(\mathrm{c}=0.05, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$-DMSO): see Table S-7; ${ }^{13} \mathrm{C} \mathrm{NMR}(150 \mathrm{MHz}$, [D $\mathrm{D}_{6}$ ]-DMSO): see Table S-6; IR (film): $\tilde{v}=3449,2250,2125,1662,1053,1024,1005 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{O}_{10}{ }^{-}: 611.28618$; found: 611.28683.

## THE EPIPYRONE A SERIES

6-Methyl-4-(2-(trimethylsilyl)ethoxy)-3-((2S,3S,4R,5S,6R)-3,4,5-tris(benzyloxy)-6-((benzyloxy)
 methyl)tetrahydro-2H-pyran-2-yl)-2H-pyran-2-one (S10). DIAD ( $5.3 \mathrm{~mL}, 26.91$ $\mathrm{mmol})$ was added dropwise to a solution of $43(3.49 \mathrm{~g}, 5.38 \mathrm{mmol}),{ }^{[12]} \mathrm{PPh}_{3}$ $(8.47 \mathrm{~g}, 32.29 \mathrm{mmol})$ and 2-TMS-ethanol ( $3.86 \mathrm{~mL}, 26.91 \mathrm{mmol}$ ) in THF (17.5 mL ) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 16 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with $t \mathrm{BuOMe}$. The combined org. extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, 5:1 to 2:1) afforded the title compound as a colorless oil ( $3.34 \mathrm{~g}, 83 \%$ ). $[a]_{\mathrm{D}}^{20}:-18.1$ ( $\mathrm{c}=0.84, \mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=7.50-7.04(\mathrm{~m}, 20 \mathrm{H}), 5.94-5.57$ $(m, 1 H), 5.13-4.33(m, 10 H), 4.16-3.52(m, 7 H), 2.25-2.14(m, 3 H), 0.97-0.78(m, 2 H), 0.09-$ $-0.16(\mathrm{~m}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers, some signals are overlapping): $\delta$ $=168.6,168.4,165.6,164.0,162.9,162.6,139.8,139.6,139.5,139.4,139.0,138.8,138.2,138.1$, $128.5,128.22,128.16,128.1,128.0,127.83,127.78,127.7,127.5,127.4,127.3,127.1,101.5,101.0$, $96.3,95.2,85.5,77.6,77.4,75.7,75.6,75.1,74.9,74.7,74.6,74.3,74.1,73.8,73.5,72.7,72.6,72.4$, 69.1, 68.6, 67.6, 20.7, 20.5, 17.9, 17.5, -1.3, -1.5 ppm; IR (film): $\tilde{v}=3030,2869,1700,1646,1556$, 1452, 1354, 1322, 1248, $1087 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{SiNa}^{+}$: 771.33237; found: 771.33216.

6-Methyl-4-(2-(trimethylsilyl)ethoxy)-3-((2S,3S,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(((tert-butyldimethylsilyl)oxy)methyl)tetrahydro-2H-pyran-2-yl)-2H-pyran-2-
 one (44). $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(30 \mathrm{mg}, 20 \%$ loading) was added to a solution of $\mathbf{S 1 0}$ ( $300 \mathrm{mg}, 0.40 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{OH}\left(4.3 \mathrm{~mL}\right.$ ), the suspension was purged with $\mathrm{H}_{2}$ and stirred under hydrogen atmosphere for 16 h . The suspension was filtered through a plug of Celite ${ }^{\circledR}$, the filtrate was concentrated and the residue dried under vacuum.

The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.1 \mathrm{~mL})$, the solution was cooled to $0{ }^{\circ} \mathrm{C}$ and pyridine $(2.1 \mathrm{~mL})$ was added. After 5 min , TBSOTf ( $0.92 \mathrm{~mL}, 4.01 \mathrm{mmol}$ ) was added dropwise and stirring was continued for 16 h at room temperature. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with $t \mathrm{BuOMe}$. The combined organic phases were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography ( $\mathrm{SiO}_{2}$, hexanes:EtOAc, 10:1) afforded the title compound as a colorless oil ( $280 \mathrm{mg}, 83 \%$ ). $[a]_{\mathrm{D}}^{20}$ : -37.0 ( $\mathrm{c}=1, \mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$,

[^2]mixture of rotamers): $\delta=5.90-5.81(\mathrm{~m}, 1 \mathrm{H}), 4.77-4.38(\mathrm{~m}, 2 \mathrm{H}), 4.17-3.99(\mathrm{~m}, 3 \mathrm{H}), 3.75-3.51(\mathrm{~m}$, $3 \mathrm{H}), 3.44-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 3 \mathrm{H}), 1.18-1.07(\mathrm{~m}, 2 \mathrm{H}), 1.01-0.91(\mathrm{~m}, 18 \mathrm{H}), 0.88-0.83$ $(\mathrm{m}, 9 \mathrm{H}), 0.76-0.70(\mathrm{~m}, 9 \mathrm{H}), 0.19-0.17(\mathrm{~m}, 3 \mathrm{H}), 0.16-0.00(\mathrm{~m}, 27 \mathrm{H}),-0.20--0.25(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers, some signals are overlapping): $\delta=168.3,167.8$, $165.7,163.5,162.7,161.9,102.4,102.0,96.0,94.8,79.6,79.40,79.36,79.2,74.3,72.7,71.7,69.8$, $68.5,67.4,67.3,60.9,27.3,27.2,26.6,26.4,26.24,26.19,25.9,20.6,19.5,19.4,19.0,18.8,18.7$, 18.2, 18.13, 18.05, 18.0, 17.8, -1.1, -1.4, -1.9, -2.3, --3.2, -3.4, -3.5, -3.6, -3.7, -3.8, -3.9, -4.3, -4.58, -4.64, -5.0, -5.17, -5.21, -5.23 ppm; IR (film): $\tilde{v}=2954,2929,2887,2856,1716,1648,1561,1472$, 1249, 1098, $1082 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{41} \mathrm{H}_{84} \mathrm{O}_{8} \mathrm{Si}_{5} \mathrm{Na}^{+}$: 867.49048; found: 867.49030.

## 6-((3E,5E)-6-Bromo-2-hydroxyhexa-3,5-dien-1-yl)-4-(2-(trimethylsilyl)ethoxy)-3-((2S,3S,4R,5S,6R)-

 3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(((tert-butyldimethylsilyl)oxy)methyl)tetrahydro-2H-pyran-2-yl)-2H-pyran-2-one (S11). A solution of LiHMDS ( $806 \mathrm{mg}, 4.82 \mathrm{mmol}$ ) in THF ( 4.8 mL ) was added dropwise to a solution of $44(815 \mathrm{mg}, 0.964 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min at this temperature before a solution of $(2 E, 4 E)$-5-bromopenta-2,4dienal $45(775.9 \mathrm{mg}, 4.82 \mathrm{mmol})^{[13]}$ in THF ( 19 mL ) was added dropwise, followed by $\mathrm{Sc}(\mathrm{OTf})_{3}(949 \mathrm{mg}, 1.93 \mathrm{mmol})$. The mixture was stirred for 2.5 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, 5:1) afforded the title compound as a yellow oil ( $611 \mathrm{mg}, 63 \%$ ). $[a]_{\mathrm{D}}^{20}:-23.5$ (c = 1,05, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers and diastereomers): $\delta=6.74-6.63(\mathrm{~m}, 1 \mathrm{H})$, $6.41-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.29-6.17(\mathrm{~m}, 1 \mathrm{H}), 6.00-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.79-6.68(\mathrm{~m}, 1 \mathrm{H}), 4.76-4.39(\mathrm{~m}, 3 \mathrm{H})$, $4.20-3.99(\mathrm{~m}, 3 \mathrm{H}), 3.77-3.51(\mathrm{~m}, 3 \mathrm{H}), 3.46-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.52(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.73(\mathrm{~m}, 1 \mathrm{H})$, $1.16-1.07(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.92(\mathrm{~m}, 18 \mathrm{H}), 0.88-0.84(\mathrm{~m}, 9 \mathrm{H}), 0.77-0.71(\mathrm{~m}, 9 \mathrm{H}), 0.21-0.18(\mathrm{~m}$, $3 \mathrm{H}), 0.17-0.13(\mathrm{~m}, 6 \mathrm{H}), 0.12-0.09(\mathrm{~m}, 9 \mathrm{H}), 0.08-0.06(\mathrm{~m}, 3 \mathrm{H}), 0.06-0.04(\mathrm{~m}, 3 \mathrm{H}), 0.03-0.00(\mathrm{~m}$, $6 \mathrm{H}),-0.19--0.25(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers and diastereomers, some signals are overlapping): $\delta=168.05,167.96,167.5,167.4,165.6,165.5,162.8,162.7,162.1$, $161.9,161.8,161.7,136.6,136.5,136.43,136.36,135.8,135.5,128.5,128.4,128.2,128.1,110.2$, $110.0,109.8,103.2,103.1,102.8,102.7,98.0,97.9,96.6,96.5,79.7,79.6,79.41,79.36,79.3,77.4$, $77.3,74.4,74.3,72.9,72.7,72.0,71.8,70.61,70.57,70.1,68.9,68.8,68.51,68.47,67.4,61.5,61.3$, 61.0, 43.5, 43.4, 43.24, 43.21, 29.8, 27.31, 27.27, 26.6, 26.4, 26.31, 26.26, 26.0, 19.6, 19.5, 19.43, $19.41,19.0,18.8,18.7,18.3,18.2,18.1,17.8,0.6,0.4,0.3,-1.1,-1.4,-1.97,-2.00,-2.3,-2.4,-3.15$,

[^3]$-3.19,-3.38,-3.44,-3.58,-3.60,-3.65,-3.66,-3.73,-3.76,-3.85,-3.87,-4.27,-4.32,-4.4,-4.5,-4.6$, -4.94, -5.0, -5.07, -5.14, -5.2 ppm. IR (film): $\tilde{v}=2929,2856,1704,1643,1557,1472,1410,1360$, 1249, $1097 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{46} \mathrm{H}_{89} \mathrm{O}_{9} \mathrm{Si}_{5} \mathrm{BrNa}^{+}$: 1027.44287 ; found: 1027.44276 .

6-((1E,3E,5E)-6-Bromohexa-1,3,5-trien-1-yl)-4-(2-(trimethylsilyl)ethoxy)-3-((2S,3S,4R,5S,6R)-3,4,5-tris((tert-butyldimethylsilyl)oxy)-6-(((tert-butyldimethylsilyl)oxy)methyl)tetrahydro-2H-pyran-2-yl)-2H-pyran-2-one (46). $\mathrm{Ac}_{2} \mathrm{O}(92 \mu \mathrm{~L}, 0.97 \mathrm{mmol})$ was added to a solution of $\mathbf{S 1 1}$ ( $195 \mathrm{mg}, 0.19 \mathrm{mmol}$ ),
 $\mathrm{NEt}_{3}(0.16 \mathrm{~mL}, 1.16 \mathrm{mmol})$ and DMAP ( $2.4 \mathrm{mg}, 0.02 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and the resulting mixture was stirred for 16 h at room temperature. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated (bath temperature $25^{\circ} \mathrm{C}$ ). The residue was dried in vacuo and used without further purification.

The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, the solution was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{DBU}(0.22 \mathrm{~mL}$, 1.45 mmol ) was added dropwise. The mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$ before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous layer was extracted with $t \mathrm{BuOMe}$. The combined organic phases were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated (bath temperature $25^{\circ} \mathrm{C}$ ). Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, 20:1) afforded the title compound as a yellow oil ( 168 mg , $88 \%$ ). $[a]_{\mathrm{D}}^{20}:-67.7$ ( $\mathrm{c}=1.05, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=7.23-7.09$ $(\mathrm{m}, 1 \mathrm{H}), 6.85-6.75(\mathrm{~m}, 1 \mathrm{H}), 6.56-6.48(\mathrm{~m}, 1 \mathrm{H}), 6.44-6.24(\mathrm{~m}, 2 \mathrm{H}), 6.14-6.04(\mathrm{~m}, 1 \mathrm{H}), 5.97-5.89$ $(\mathrm{m}, 1 \mathrm{H}), 4.78-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.02(\mathrm{~m}, 3 \mathrm{H}), 3.77-3.52(\mathrm{~m}, 3 \mathrm{H}), 3.47-3.30(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.09$ $(\mathrm{m}, 2 \mathrm{H}), 1.03-0.93(\mathrm{~m}, 18 \mathrm{H}), 0.88-0.84(\mathrm{~m}, 9 \mathrm{H}), 0.75-0.71(\mathrm{~m}, 9 \mathrm{H}), 0.21-0.18(\mathrm{~m}, 3 \mathrm{H}), 0.16-$ $0.13(\mathrm{~m}, 6 \mathrm{H}), 0.12-0.10(\mathrm{~m}, 9 \mathrm{H}), 0.09-0.07(\mathrm{~m}, 3 \mathrm{H}), 0.06-0.04(\mathrm{~m}, 3 \mathrm{H}), 0.03-0.00(\mathrm{~m}, 3 \mathrm{H}),-0.17-$ $-0.24(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers, some signals are overlapping): $\delta=$ $167.9,167.5,164.6,160.9,159.4,158.6,137.24,137.21,135.69,135.65,135.3,135.1,131.7,131.6$, $123.7,123.5,112.7,112.5,104.5,104.1,97.4,96.3,79.6,79.5,79.4,79.3,77.4,74.5,72.7,71.8,69.9$, 68.6, 67.4, 60.9, 27.31, 27.26, 26.6, 26.4, 26.3, 26.2, 26.0, 19.6, 19.4, 19.0, 18.8, 18.7, 18.23, 18.16, 18.09, 18.05, 17.8, -1.1, -1.4, -1.9, -2.3, -3.2, -3.4, -3.5, -3.6, -3.7, -3.8, -3.9, -4.3, -4.5, -4.6, -5.0, -5.1, 5.19, -5.20 ppm ; IR (film): $\tilde{v}=2929,2886,2856,1719,1630,1598,1537,1472,1249,1098 \mathrm{~cm}^{-1}$; HRMS (ESI): $m / z$ calcd. for $\mathrm{C}_{46} \mathrm{H}_{87} \mathrm{O}_{8} \mathrm{Si}_{5} \mathrm{BrNa}^{+}$: 1009.43231 ; found: 1009.43200 .

Compound ( $\boldsymbol{R}, \mathbf{S}$ )-48. This reaction was performed in the dark. $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(1.7 \mathrm{mg}, 0.0059 \mathrm{mmol})$
 was added to a degassed (pump and freeze, 3 cycles) solution of $\mathrm{Ph}_{3} \mathrm{As}(3.6 \mathrm{mg}$, 0.0118 mmol ) and flame dried $\left[\mathrm{Ph}_{2} \mathrm{O}_{2} \mathrm{P}\right]\left[\mathrm{NBu}_{4}\right]^{[11]}(163.2 \mathrm{mg}, 0.3551 \mathrm{mmol})$ in DMF ( 0.5 mL ). The resulting mixture was stirred for 5 min before it was transferred to a Schlenk tube containing alkenyl iodide ( $\boldsymbol{R}, \mathbf{S}$ )-29 ( $50 \mathrm{mg}, 0.1184 \mathrm{mmol}$ ) and diene $47(56 \mathrm{mg}, 0.1194 \mathrm{mmol})$. The resulting mixture was stirred for 20 h at room temperature. Aq. $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}, 44 \mu \mathrm{~L}, 0.1326 \mathrm{mmol})$ was added in one portion followed after 5 min by a degassed (pump and freeze, 3 cycles) solution of bromide 46 ( $105 \mathrm{mg}, 0.1062 \mathrm{mmol}$ ) in THF ( 0.42 mL ) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(8.7 \mathrm{mg}, 0.0119 \mathrm{mmol})$. The mixture was stirred for 18 h , the reaction was quenched with water and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic phases were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated (below $25^{\circ} \mathrm{C}$ ). Purification of the crude product by flash chromatography ( $\mathrm{SiO}_{2}$, pentane $+2.5 \% \mathrm{NEt}_{3}$ ) afforded the title compound ( $75 \mathrm{mg}, 58 \%$ ) as a red oil. $[a]_{\mathrm{D}}^{20}:-74$ (c $=0.1$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers): $\delta=7.32-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.62-6.24(\mathrm{~m}, 8 \mathrm{H})$, $6.17-6.10(\mathrm{~m}, 1 \mathrm{H}), 6.05-5.96(\mathrm{~m}, 1 \mathrm{H}), 5.93-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.72-5.58(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.39(\mathrm{~m}, 2 \mathrm{H})$, $4.32-4.30(m, 2 H), 4.20-4.00(m, 3 H), 3.80-3.52(m, 3 H), 3.49-3.28(m, 1 H), 3.09-2.96(m, 1 H)$, $1.83(\mathrm{~s}, 3 \mathrm{H}), 1.23-1.05(\mathrm{~m}, 7 \mathrm{H}), 1.03-1.00(\mathrm{~m}, 9 \mathrm{H}), 0.98-0.92(\mathrm{~m}, 12 \mathrm{H}), 0.88-0.82(\mathrm{~m}, 15 \mathrm{H}), 0.76$ $-0.70(\mathrm{~m}, 9 \mathrm{H}), 0.22--0.02(\mathrm{~m}, 39 \mathrm{H}),-0.16--0.25(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture of rotamers, some signals are overlapping): $\delta=168.4,168.0,167.6,164.8,163.4,161.0,159.9,159.2$, $149.8,149.7,139.6,138.4,139.2,137.0,136.8,136.7,136.0,135.8,135.5,132.7,132.6,132.3,132.2$, $131.0,130.9,130.63,130.56,129.6,128.71,128.68,121.8,121.6,103.9,103.5,96.7,95.6,79.52$, $79.48,79.4,79.3,77.40,77.35,74.5,72.7,71.8,69.9,68.6,67.3,63.0,60.9,45.2,44.5,32.2,31.8$, 29.8, 29.3, 27.30, 27.25, 26.6, 26.4, 26.3, 26.2, 25.9, 20.7, 19.6, 19.4, 19.0, 18.8, 18.7, 18.2, 18.14, 18.08, 18.0, 17.8, 17.6, 14.3, 13.7, 11.3, 9.1, -1.1, -1.4, -1.9, -2.3, -3.2, -3.4, -3.5, -3.6, -3.7, -3.8, -3.9, 4.3, -4.5, -4.6, -5.0, -5.16, -5.22 ppm; IR (film): $\tilde{v}=2956,2928,2855,1721,1628,1528,1471,1407$, 1251, 1101, $1005 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{68} \mathrm{H}_{124} \mathrm{O}_{10} \mathrm{Si}_{6} \mathrm{Na}^{+}$: 1291.77024; found: 1291.76933.

Compound $(S, R)$-48. Prepared analogously as a red oil ( $46.3 \mathrm{mg}, 57 \%) \cdot[a]_{\mathrm{D}}^{20}:-81.0\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right)$;
 ${ }^{1} \mathrm{H}$ NMR $\quad\left(400 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}, \quad\right.$ mixture of rotamers): $\delta=7.29-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.60-6.25$ $(\mathrm{m}, 8 \mathrm{H}), 6.16-6.10(\mathrm{~m}, 1 \mathrm{H}), 6.06-5.96(\mathrm{~m}$, 1H), $5.94-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.73-5.61(\mathrm{~m}, 1 \mathrm{H})$, $4.79-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.19$
$-4.03(\mathrm{~m}, 3 \mathrm{H}), 3.77-3.53(\mathrm{~m}, 3 \mathrm{H}), 3.47-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.08-2.93(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.23$ $-1.07(\mathrm{~m}, 7 \mathrm{H}), 1.04-1.00(\mathrm{~m}, 9 \mathrm{H}), 0.98-0.94(\mathrm{~m}, 12 \mathrm{H}), 0.88-0.84(\mathrm{~m}, 15 \mathrm{H}), 0.75-0.71(\mathrm{~m}, 9 \mathrm{H})$, $0.21-0.00(\mathrm{~m}, 39 \mathrm{H}),-0.16--0.24(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers, some signals are overlapping): $\delta=168.39,168.01,167.62,161.03,159.92,159.16,149.75,139.56,139.46$, 139.22, 136.98, 136.81, 136.74, 135.97, 135.83, 135.47, 132.66, 132.26, 131.02, 130.88, 130.64, $130.57,129.61,128.72,121.81,121.59,103.52,96.67,95.58,79.54,79.48,79.40,79.36,77.40$, $77.35,74.51,72.69,71.82,69.90,68.6367 .31,63.03,60.93,46.09,44.52,32.22,31.81,29.84,29.31$, $27.31,27.26,26.57,26.40,26.30,26.22,25.95,20.70,19.56,19.42,18.96,18.84,18.69,18.22,18.15$, $18.09,18.06,17.82,17.57,13.70,11.31,1.15,-1.06,-1.39,-1.93,-2.29,-3.18,-3.40,-3.46,-3.60$, -3.69, -3.76, -3.87, -4.30, -4.44, -4.60, -5.01, $-5.15,-5.21 \mathrm{ppm}$; IR (film): $\tilde{v}=2955,2929,2856,1722$, 1628, 1528, 1462, 1408, 1251, 1100, $1006 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{68} \mathrm{H}_{124} \mathrm{O}_{10} \mathrm{Si}_{6} \mathrm{Na}^{+}: 1291.77024$; found: 1291.76961.

Compound $(\boldsymbol{R}, \boldsymbol{R})-48$. Prepared analogously as a red oil ( $32.7 \mathrm{mg}, 49 \%$ ). $[a]_{\mathrm{D}}^{20}:-62.0$ (c $=0.1, \mathrm{CHCl}_{3}$ );

${ }^{1} \mathrm{H}$ NMR $\quad\left(400 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right.$, mixture of rotamers): $\delta=7.29-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.61-$ $6.25(\mathrm{~m}, 8 \mathrm{H}), 6.17-6.12(\mathrm{~m}, 1 \mathrm{H}), 6.05-$ $5.97(\mathrm{~m}, 1 \mathrm{H}), 5.91-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.68-$ $5.59(\mathrm{~m}, 1 \mathrm{H}), 4.79-4.40(\mathrm{~m}, 2 \mathrm{H}), 4.30-$ $4.21(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.04(\mathrm{~m}, 3 \mathrm{H}), 3.77-3.53(\mathrm{~m}, 3 \mathrm{H}), 3.46-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.13-2.97(\mathrm{~m}, 1 \mathrm{H}), 1.94-$ $1.78(\mathrm{~m}, 3 \mathrm{H}), 1.26-1.06(\mathrm{~m}, 7 \mathrm{H}), 1.04-0.99(\mathrm{~m}, 12 \mathrm{H}), 0.98-0.94(\mathrm{~m}, 12 \mathrm{H}), 0.88-0.82(\mathrm{~m}, 15 \mathrm{H})$, $0.75-0.71(\mathrm{~m}, 9 \mathrm{H}), 0.20-0.01(\mathrm{~m}, 39 \mathrm{H}),-0.17--0.23(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers, some signals are overlapping): $\delta=168.4,168.0,167.3,164.8,161.0,159.9$, $159.2,149.5,139.6,139.5,139.2,137.0,136.8,136.8,136.0,135.8,135.5,132.7,132.6,132.3,132.2$, $131.0,130.9,130.6,130.6,130.1,128.8,125.7,121.8,121.6,103.9,103.5,96.7,95.6,79.6,79.5$, $79.41,79.4,77.4,77.3,74.5,72.7,71.8,69.9,68.6,67.3,63.1,60.9,44.8,32.7,31.9,30.5,30.2,27.3$, 27.27, 26.6, 26.4, 26.3, 26.2, 25.9, 21.5, 19.6, 19.4, 19.2, 19.0, 18.8, 18.7, 18.2, 18.16, 18.1, 18.06, 17.8, 17.6, 13.7, 11.5, -1.1, -1.4, -1.9, -2.3, -3.2, -3.4, -3.44, -3.6, -3.7, -3.8, -3.9, -4.3, -4.4, -4.6, -5.0, -5.1, -5.2 ppm ; IR (film): $\tilde{v}=2955,2929,2857,1722,1629,1529,1471,1407,1251,1167,1101,1006$ $\mathrm{cm}^{-1}$; HRMS (ESI): $m / z$ calcd. for $\mathrm{C}_{68} \mathrm{H}_{124} \mathrm{O}_{10} \mathrm{Si}_{6} \mathrm{Na}^{+}$: 1291.77024; found: 1291.76927.

Compound (S,S)-48. Prepared analogously as a red oil ( $28.8 \mathrm{mg}, 57 \%$ ). $[a]_{\mathrm{D}}^{20}:-33.0\left(c=0.1, \mathrm{CHCl}_{3}\right)$;
 ${ }^{1} \mathrm{H}$ NMR $\quad\left(400 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right.$, mixture of rotamers): $\delta=7.24-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.61-$ 6.27 (m, 8H), $6.16-6.11(\mathrm{~m}, 1 \mathrm{H}), 6.06-$ $5.97(\mathrm{~m}, 1 \mathrm{H}), 5.92-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.66-$
$5.59(\mathrm{~m}, 1 \mathrm{H}), 4.78-4.41(\mathrm{~m}, 2 \mathrm{H}), 4.32-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.04(\mathrm{~m}, 4 \mathrm{H}), 3.75-3.54(\mathrm{~m}, 4 \mathrm{H}), 3.49-$ $3.30(\mathrm{~m}, 1 \mathrm{H}), 3.11-2.88(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 3 \mathrm{H}), 1.23-1.09(\mathrm{~m}, 7 \mathrm{H}), 1.07-1.03(\mathrm{~m}, 9 \mathrm{H}), 1.03-$ $0.99(\mathrm{~m}, 12 \mathrm{H}), 0.98-0.94(\mathrm{~m}, 15 \mathrm{H}), 0.88-0.84(\mathrm{~m}, 15 \mathrm{H}), 0.75-0.71(\mathrm{~m}, 9 \mathrm{H}), 0.21-0.02(\mathrm{~m}, 39 \mathrm{H}),-$ 0.16 - -0 $24(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, mixture of rotamers, some signals are overlapping): $\delta=168.42,167.61,161.01,159.92,159.16,149.51,139.55,139.45,139.21,136.81$, $136.74,135.83,135.46,132.67,132.27,132.21,131.03,130.58,130.10,128.74,121.82,103.92$, 103.53, $96.67,95.58,79.54,79.49,79.38,79.34,77.36,74.51,72.69,71.82,69.90,68.63,67.31$, $63.05,60.93,46.34,44.78,32.67,31.89,30.22,29.84,27.31,27.26,26.57,26.40,26.30,26.22,25.94$, $21.53,19.55,19.42,19.20,18.96,18.84,18.70,18.22,18.16,18.09,18.06,17.82,17.64,17.56,13.72$, 11.65, 11.45, 1.15, -1.07, -1.39, -1.93, -2.29, -3.18, -3.40, -3.45, -3.59, -3.69, -3.76, -3.87, -4.29, -4.44, -4.59, -5.01, -5.15, -5.21 ppm; IR (film): $\tilde{v}=2955,2928,2856,1720,1628,1529,1462,1361,1251$, 1099, 1048, $1007 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{68} \mathrm{H}_{124} \mathrm{O}_{10} \mathrm{Si}_{6} \mathrm{Na}^{+}$: 1291.77024; found: 1291.76960.

Compound ( $R, S$ )-2. This reaction was performed in the dark. TASF ( $65 \mathrm{mg}, 0.236 \mathrm{mmol}$ ) was added to

a solution of product $(R, S)-48 \quad(25 \mathrm{mg}$, 0.0197 mmol ) in DMF ( 0.5 mL ) and the mixture was stirred for 16 h at room temperature. Another portion of TASF ( $65 \mathrm{mg}, 0.236 \mathrm{mmol}$ ) was added and stirring continued for additional 16 h . This procedure was repeated two more times. For work up, aq. HCl was added, the aqueous layer ( $\mathrm{pH}=3$ ) was extracted with EtOAc ( $5 \times 5 \mathrm{~mL}$ ) and the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off, the solvent was evaporated and the residue was purified by HPLC (Column: 150 mm YMC, $\varnothing=10 \mathrm{~mm}$; stationary phase: YMC Triart C18 $5 \mu \mathrm{~m}, 10150$ 00550; mobile phase: MeOH: $0.1 \%$ TFA in water, $85: 15$ ) to give the title compound as an orange-red solid ( $2.4 \mathrm{mg}, 19 \%$ ). $[a]_{\mathrm{D}}^{20}: 147.1$ (c $=0.05, \mathrm{MeOH}$ ). ${ }^{1} \mathrm{H} \mathrm{NMR}$ ( $600 \mathrm{MHz},\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}$ ): $\delta=7.14(\mathrm{dd}, \mathrm{J}=15.3,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, \mathrm{J}=14.7,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, \mathrm{J}$ $=14.6,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.47-6.33(\mathrm{~m}, 6 \mathrm{H}), 6.20(\mathrm{~d}, \mathrm{~J}=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.13-6.11(\mathrm{~m}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H})$, $5.64(\mathrm{dd}, J=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.73 (dd, $J=11.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=11.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{dd}, \mathrm{J}=9.4,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.06-2.95(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 2 \mathrm{H}), 1.21-$ $1.13(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{dt}, J=12.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J=$ 7.4 Hz, 3H) ppm; ${ }^{13}$ C NMR (151 MHz, [D $\left.{ }_{4}\right]-\mathrm{MeOH}$ ): see Table S-1;
${ }^{1} \mathrm{H}$ NMR ( $\left.600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}\right): ~ \delta=12.71$ (brs, 1 H ), $7.00(\mathrm{dd}, J=15.1,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, \mathrm{J}=14.6$, $11.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.51 (dd, $14.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.48-6.39(\mathrm{~m}, 6 \mathrm{H}), 6.32(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 2 \mathrm{H})$, $5.62(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}$, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.39(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$,
$1.36-1.28(m, 2 H), 1.28-1.21(m, 1 H), 1.12(d d d, J=13.6,7.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.08-1.01(m, 1 H), 0.94$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.0,3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{CNMR}\left(151 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}\right):$ see Tabel S-2;

IR (film): $\tilde{v}=3410,2924,2169,2149,2039,2003,1958,1637,1543,1454,1003 \mathrm{~cm}-1 ;$ HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{O}_{10}$ : 611.28618; found: 611.28667.

Compound (S,R)-2. Prepared analogously as an orange-red oil ( $3.6 \mathrm{mg}, 16 \%$ after HPLC) (column: 150
 mm YMC, $\emptyset=10 \mathrm{~mm}$; stationary phase: YMC Triart C18 $5 \mu \mathrm{~m}, 10150$ 00550; mobile phase: $\mathrm{MeOH}: 0.1 \%$ TFA in water, $85: 15)$. $[a]_{\mathrm{D}}^{20}$ : -118.4 ( $c=0.05, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ( 600 MHz , $\left.\left[D_{4}\right]-\mathrm{MeOH}\right): \delta=7.14(\mathrm{dd}, J=15.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=14.5,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=14.7$, $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.51-6.35(\mathrm{~m}, 6 \mathrm{H}), 6.20(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.14-6.10(\mathrm{~m}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J$ $=10.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=3.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (dd, J = 11.5, 6.8 Hz, 1H), 3.69 (dd, J=11.5, 5.2, 1H), 3.62-3.59 (m, 1H), 3.51 (dd, J=9.4, 3.2 Hz, 1H), $3.05-2.95(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.45-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{dt}, J=13.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.17$ (tdd, J = 13.2, 6.6, 5.6 Hz, 1H), $1.14-1.04(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.86$ ( $\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}$ ) ppm; ${ }^{13} \mathrm{C}$ NMR (151 MHz, [D 4$]-\mathrm{MeOH}$ ): see Table S-1;
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$-DMSO): $\delta=12.75$ (brs, 1 H ), 7.01 (dd, $J=15.1,11.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.72 (dd, J=14.7, $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55-6.40(\mathrm{~m}, 7 \mathrm{H}), 6.33(\mathrm{~d}, \mathrm{~J}=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.15-6.07(\mathrm{~m}, 2 \mathrm{H}), 5.63(\mathrm{~d}, J=10.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.66(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69$ $(\mathrm{d}, \mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.82(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.28(\mathrm{~m}$, $2 \mathrm{H}), 1.24(\mathrm{dt}, J=13.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{tq}, J=14.5,13.8,8.0,6.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.08-1.00(\mathrm{~m}, 1 \mathrm{H})$, $0.94(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-\right.$ DMSO): see Table S-2;

IR (film): $\tilde{v}=3296,3018,2959,2923,1637,1550,1493,1211,1139,1003 \mathrm{~cm}-1 ;$ HRMS (ESI): m/z calcd. for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{O}_{10}$ : 611.28618; found: 611.28681.

Compound ( $\boldsymbol{R}, \boldsymbol{R}$ )-2. Prepared analogously as an orange-red oil ( $3.5 \mathrm{mg}, 22 \%$ after HPLC) (column: 150
 mm YMC, $\varnothing=10 \mathrm{~mm}$; stationary phase: YMC Triart C18 $5 \mu \mathrm{~m}, 10150$ 00550; mobile phase: $\mathrm{MeOH}: 0.1 \%$ TFA in water, $85: 15)$. $[a]_{\mathrm{D}}^{20}$ : -44.0 ( $c=0.05, \mathrm{MeOH}$ ). 1 H NMR ( 600 MHz , $\left.\left[D_{4}\right]-\mathrm{MeOH}\right): \delta=7.14(\mathrm{dd}, J=15.3,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=14.4,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=14.8$,
$10.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.46-6.35(\mathrm{~m}, 6 \mathrm{H}), 6.19(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.60(\mathrm{~d}, \mathrm{~J}=10.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.63-$ $3.59(\mathrm{~m}, 1 \mathrm{H}), 3.56-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.97(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.38-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.19-1.07$ $(\mathrm{m}, 2 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.87-0.83(\mathrm{~m}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz},\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}\right)$ : see Table S-1;
${ }^{1} \mathrm{H}$ NMR ( $\left.600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}\right): ~ \delta=12.75$ (brs, 1 H ), 7.01 (dd, $J=15.1,11.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.72 (dd, $J=14.7$, $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.56-6.39(\mathrm{~m}, 7 \mathrm{H}), 6.33(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=10.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.69(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.86(\mathrm{~m}, 2 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{ddd}, J=13.3,9.5$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.14-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, 0.79 (d, J = 6.3 Hz, 3H) ppm; ${ }^{13}$ C NMR (151 MHz, [D6]-DMSO): see Table S-2;

IR (film): $\tilde{v}=3338,3018,2958,2923,1676,1638,1540,1497,1439,1317,1207,1139,1003 \mathrm{~cm}-1$; HRMS (ESI): $m / z$ calcd. for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{O}_{10}$ : 611.28618; found: 611.28648 .

Compound (S,S)-2. Prepared analogously as an orange-red oil ( $2.2 \mathrm{mg}, 17 \%$ after HPLC) (column: 150
 mm YMC, $\varnothing=10 \mathrm{~mm}$; stationary phase: YMC Triart C18 $5 \mu \mathrm{~m}, 10150$ 00550; mobile phase: MeOH: $0.1 \%$ TFA in water 85:15). $[a]_{\mathrm{D}}^{20}: 14.2$ (c = 0.05, MeOH). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz},\left[D_{4}\right]-\right.$ $\mathrm{MeOH}): \delta=7.18-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{dd}, \mathrm{J}=14.7,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=14.7,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.50-$ $6.35(\mathrm{~m}, 6 \mathrm{H}), 6.19(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 6.06-6.09(\mathrm{~m}, 1 \mathrm{H}), 5.60(\mathrm{~d}, \mathrm{~J}=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.54(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.56$ $(\mathrm{m}, 1 \mathrm{H}), 3.52(\mathrm{dd}, \mathrm{J}=9.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.97(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.25(\mathrm{~m}, 3 \mathrm{H})$, $1.20-1.07(\mathrm{~m}, 2 \mathrm{H}), 1.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz},\left[\mathrm{D}_{4}\right]-\mathrm{MeOH}$ ): see Table S-1;
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$-DMSO): $\delta=12.76$ (brs, 1 H ), 10.80 (brs, 1 H ), 7.01 (dd, $J=15.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.73 (dd, $J=14.5,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.55-6.39(\mathrm{~m}, 7 \mathrm{H}), 6.33(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H})$, $5.58(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ $(\mathrm{d}, \mathrm{J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{t}, \mathrm{J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 1 \mathrm{H}), 3.47-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{t}, \mathrm{J}=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.94-2.87(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.36-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.14-1.05(\mathrm{~m}, 3 \mathrm{H}), 0.96(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.81(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $\left.151 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}\right)$ : see Table $\mathrm{S}-$ 2;

IR (film): $\tilde{v}=3370,2963,2919,1675,1567,1540,1423,1379,1251,1208,1139,1093,1054,1003$ cm-1; HRMS (ESI): $m / z$ calcd. for $\mathrm{C}_{34} \mathrm{H}_{43} \mathrm{O}_{10}$ : 611.28618; found: 611.28684.

## MODEL COMPOUNDS FOR COMPARISON (see Figure 1)

( $2 R, 3 S, 4 R$ )-3,4-Bis(benzyloxy)-2-((benzyloxy)methyl)-3,4-dihydro-2H-pyran-5-carbaldehyde (S12). ${ }^{[14]}$

$\mathrm{POCl}_{3}(2.45 \mathrm{~mL}, 26.16 \mathrm{mmol})$ was added dropwise over 1 h to a solution of tri-O-benzyl-D-glucal ( $1.00 \mathrm{~g}, 2.4 \mathrm{mmol}$ ) in DMF ( 4 mL ) at $0^{\circ} \mathrm{C}$. The mixture was stirred for 24 h while warming to room temperature before the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}$. The aqueous phase was extracted with $t \mathrm{BuOMe}$, and the combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography ( $\mathrm{SiO}_{2}$, hexanes:EtOAc, $5: 1$ ) afforded the title compound as a colorless oil ( $807 \mathrm{mg}, 76 \%$ ). $[\alpha]_{\mathrm{D}}^{20}:+2.1$ (c $=1, \mathrm{CHCl}_{3}$ ), Lit.: ${ }^{[14]}[\alpha]_{\mathrm{D}}^{25}$ : $\left.+6.8, \mathrm{c}=0.34, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.41(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.20(\mathrm{~m}, 15 \mathrm{H}), 4.77-4.71(\mathrm{~m}$, $1 \mathrm{H}), 4.71-4.44(\mathrm{~m}, 7 \mathrm{H}), 4.42(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=10.9,7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.63 (dd, 10.7, 4.7 Hz, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=190.5,164.4,138.3,137.8,137.3$, $128.7,128.6,128.5,128.2,128.0,127.93,127.87,127.8,117.9,79.5,73.5,72.6,71.8,71.5,68.5,65.4$ ppm; IR (film): $\tilde{v}=3064,3031,2866,1673,1626,1454,1294,1199,1089,1072 \mathrm{~cm}^{-1} ;$ HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}^{+}$: 467.18289 ; found: 467.18306 .
(2R,3R,4R)-3,4-Bis(benzyloxy)-2-((benzyloxy)methyl)-3,4-dihydro-2H-pyran-5-carbaldehyde (S13).


Prepared analogously from tri-O-benzyl-D-galactal as a colorless oil ( $5.12 \mathrm{~g}, 65 \%$ ).
$[\alpha]_{\mathrm{D}}^{20}:-6.1\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.37(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.28$ (m, 15H), $7.27(\mathrm{~s}, 1 \mathrm{H}), 4.79-4.77(\mathrm{~m}, 2 \mathrm{H}), 4.75-4.69(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{dd}, \mathrm{J}=3.5,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=5.3 \mathrm{~Hz}$, 2 H ), 3.85 (dd, $J=5.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}$ ) ppm; ${ }^{13} \mathrm{CNMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=189.5,164.5,138.8,137.9$, $137.4,128.6,128.5,128.3,128.1,128.0,127.8,127.7,127.7,127.5,119.2,78.8,73.7,73.5,73.1$, 71.5, 68.5, 64.7 ppm; IR (film): $\tilde{v}=3030,2866,1672,1618,1496,1454,1269,1198,1091,1060,1027$ $\mathrm{cm}^{-1}$; HRMS (ESI): $m / z$ calcd. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}^{+}$: 467.18289; found: 467.18351.
( $2 R, 3 S, 4 R$ )-3,4-Bis(benzyloxy)-2-((benzyloxy)methyl)-3,4-dihydro-2H-pyran-5-carboxylic acid (S14).

$\mathrm{NaH}_{2} \mathrm{PO}_{4}(5.60 \mathrm{~g}, 46.68 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}\left(35 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 7.5 \mathrm{~mL}, 77.17 \mathrm{mmol}\right)$ were added to a solution of $\mathbf{S 1 2}(6.45 \mathrm{~g}, 15.49 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN} / t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}$ (2:2:1, $70 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 5 min before $\mathrm{NaClO}_{2}(8.4 \mathrm{~g}$, 92.88 mmol ) was added and stirring was continued for 16 h at room temperature. The mixture was diluted with water and the aqueous phase was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography ( $\mathrm{SiO}_{2}$, hexanes:EtOAc, $5: 1$ )

[^4]afforded the title compound ( $5.60 \mathrm{~g}, 79 \%$ ). $[\alpha]_{\mathrm{D}}^{20}$ : $-4.2\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.79(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.21(\mathrm{~m}, 15 \mathrm{H}), 4.72-4.63(\mathrm{~m}, 2 \mathrm{H}), 4.59-4.49(\mathrm{~m}, 4 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=10.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, \mathrm{J}=10.7,4.9 \mathrm{~Hz}$, 1H) ppm; ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=172.9,157.6,138.3,137.8,137.5,128.7,128.6,128.5$, $128.15,128.11$ 127.91, 127.88, 127.85, 127.1, 104.7, 77.5, 73.5, 72.4, 71.6, 71.4, 68.4, 67.8 ppm ; IR (film): $\tilde{v}=3063,3030,2863,1647,1453,1362,1238,1097,1069,1047,1027 \mathrm{~cm}^{-1} ;$ HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na}^{+}$: 483.17781; found: 483.17805 .
(2R,3R,4R)-3,4-Bis(benzyloxy)-2-((benzyloxy)methyl)-3,4-dihydro-2H-pyran-5-carboxylic acid (S15).
 Prepared analogously (4.22 g, 80\%). $[\alpha]_{\mathrm{D}}^{20}:-27.7\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.66(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 15 \mathrm{H}), 4.83(\mathrm{~d}, \mathrm{~J}=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.60(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=3.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{dd}, \mathrm{J}=5.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.5,157.6$, $138.9,138.1,137.6,128.7,128.5,128.3,128.1,128.0,127.8,127.8,127.7,127.5,106.2,77.3,74.2$, 73.9, 73.6, 71.8, 68.4, 67.4 ppm; IR (film): $\tilde{v}=3030,2866,1674,1619,1496,1453,1433,1369,1305$, 1190, 1075, $1027 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{O}_{6} \mathrm{Na}^{+}$: 483.17781; found: 483.17772.

2-(Trimethylsilyl)ethyl (2R,3S,4R)-3,4-bis(benzyloxy)-2-((benzyloxy)methyl)-3,4-dihydro-2H-pyran-5-carboxylate (S16). DEAD ( $6.70 \mathrm{~mL}, 36.77 \mathrm{mmol}$ ) was added dropwise over 60 min to a solution of
 S14 ( $5.60 \mathrm{~g}, 12.15 \mathrm{mmol})$, 2-(TMS)-ethanol ( $4.5 \mathrm{~mL}, 31.39 \mathrm{mmol}$ ) and $\mathrm{PPh}_{3}(11.50 \mathrm{~g}$, $43.84 \mathrm{mmol})$ in THF $(60 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 16 h while warming to room temperature. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography ( $\mathrm{SiO}_{2}$, hexanes:EtOAc, 10:1) afforded the title compound ( $5.25 \mathrm{~g}, 77 \%$ ). $[\alpha]_{\mathrm{D}}^{20}$ : $-15.8\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.65(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.20(\mathrm{~m}, 15 \mathrm{H}), 4.65(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.58-4.47(\mathrm{~m}, 4 \mathrm{H})$, $4.43(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.21(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J$ $=10.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.06-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.5,155.3,138.4,137.9,137.6,128.7,128.6,128.5,128.12,128.10,127.92$, 127.86, 127.8, 105.7, 77.1, 73.5, 72.5, 71.61, 71.56, 68.4, 68.1, 62.5, 17.6, -1.3 ppm; IR (film): $\tilde{v} 3031$, 2952, 2897, 1701, 1633, 1454, 1293, 1275, 1250, 1195, 1071, $1028 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{SiNa}^{+}$: 583.24864; found: 583.24854.

2-(Trimethylsilyl)ethyl (2R,3R,4R)-3,4-bis(benzyloxy)-2-((benzyloxy)methyl)-3,4-dihydro-2H-pyran-5-carboxylate (S17). Prepared analogously (4.00 g, 78\%). [ $\alpha]_{\mathrm{D}}^{20}$ : -39.3 (c = 1, $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.52(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.27(\mathrm{~m}, 15 \mathrm{H}), 4.83(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.76(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.55(\mathrm{~m}, 4 \mathrm{H}), 4.48(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.89$ (dd, $J=5.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.09-0.96(\mathrm{~m}, 2 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.0$, $155.2,139.2,138.3,137.7,128.6,128.5,128.3,128.1,128.0,127.7,127.7,127.4,107.3,76.9,74.2$, 74.2, $73.5,71.7,68.4,67.7,62.6,17.6,-1.4 \mathrm{ppm} ; \operatorname{IR}$ (film): $\tilde{v}=3030,2952,1699,1626,1496,1454$, 1369, 1304, 1277, 1249, 1064, $1028 \mathrm{~cm}^{-1}$. HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{SiNa}^{+}$: 583.24864; found: 583.24927.

2-(Trimethylsilyl)ethyl (2R,3R,4R)-3,4-bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)-oxy)methyl)-3,4-dihydro-2H-pyran-5-carboxylate (S18). $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(375 \mathrm{mg}, 10 \% \mathrm{w} / \mathrm{w})$ was added to
 a solution of $\mathbf{S 1 6}(3.75 \mathrm{~g}, 6.69 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(66 \mathrm{~mL})$. The solution was purged with $\mathrm{H}_{2}$ and stirred for 15 h at room temperature under $\mathrm{H}_{2}$ atmosphere (1 atm). For work up, the suspension was filtered through a plug of Celite ${ }^{\circledR}$ and the filtrate was concentrated.

TBSOTf ( $6.20 \mathrm{~mL}, 26.99 \mathrm{mmol}$ ) was added to a solution of the crude triol and pyridine ( 6.50 mL , $80.36 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 16 h while warming to room temperature before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, $60: 1$ ) afforded the title compound ( $3.72 \mathrm{~g}, 88 \%$ ). $[\alpha]_{\mathrm{D}}^{20}$ : $+4.3\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.55(\mathrm{~s}, 1 \mathrm{H}), 4.36-4.20(\mathrm{~m}, 3 \mathrm{H}), 4.20-4.08(\mathrm{~m}$, $1 \mathrm{H}), 3.93(\mathrm{dd}, J=11.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=11.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.07-0.97(\mathrm{~m}$, $2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 18 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}$, 12H) ppm; ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=167.7,154.4,106.7,82.3,68.3,63.8,62.3,62.1,26.1$, 25.84, 25.78, 18.5, 18.13, 18.10, 17.5, -1.3, -4.6, -4.67 (2 C), -4.71, -5.05, -5.14 ppm; IR (film): $\tilde{v}=$ 2954, 2930, 2896, 2858, 1706, 1635, 1472, 1252, 1197, $1076 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{30} \mathrm{H}_{64} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 655.36722; found: 655.36777.

2-(Trimethylsilyl)ethyl (2R,3S,4R)-3,4-bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)-
 oxy)methyl)-3,4-dihydro-2H-pyran-5-carboxylate (S19). Prepared analogously (1.15 g, 33\%). $[\alpha]_{D}^{20}:+35.2\left(c=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.44$ (s, $1 \mathrm{H}), 4.49(\mathrm{dd}, J=3.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.05(\mathrm{~m}, 2 \mathrm{H}), 4.00-$
$3.91(\mathrm{~m}, 2 \mathrm{H}), 1.04-0.97(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.17-0.12(\mathrm{~m}, 6 \mathrm{H}), 0.11(\mathrm{~s}$, $3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.05-0.03(\mathrm{~m}, 15 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=167.0,154.5,109.0,81.5$, $69.4,63.8,62.4,61.9,26.2,26.14,26.07,18.6,18.5$ (2C), 17.5, -1.3, -4.3, -4.7, -4.8, $-4.94,-4.96,-5.1$ ppm; IR (film): $\tilde{v}=2953,2929,2857,1703,1628,1472,1389,1361,1307,1274,1064 \mathrm{~cm}^{-1}$; HRMS (ESI): $m / z$ calcd. for $\mathrm{C}_{30} \mathrm{H}_{64} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 655.36722; found: 655.36741.

## 2-(Trimethylsilyl)ethyl (2R,3R,4R)-3,4-bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)-

 oxy)methyl)-6-iodo-3,4-dihydro-2H-pyran-5-carboxylate (S20). nBuLi (1.6 M in hexanes, 1.60 mL , $2.56 \mathrm{mmol})$ was added dropwise to a solution of $i \mathrm{Pr}_{2} \mathrm{NH}(0.50 \mathrm{~mL}, 3.57 \mathrm{mmol})$ in THF ( 5.70 mL ) at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred for 15 min before it was cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of $\mathbf{S 1 8}(540 \mathrm{mg}, 0.85 \mathrm{mmol})$ in THF ( 5.70 mL ) was added dropwise and stirring was continued for 1.5 h . A solution of iodine ( 1.08 g , 4.26 mmol ) in THF ( 5.70 mL ) was then added dropwise and stirring was continued for 30 min before the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and the aqueous phase was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, 20:1) afforded the title compound ( $598 \mathrm{mg}, 92 \%$ ). $[\alpha]_{\mathrm{D}}^{20}:+4.2$ (c $=1, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.45(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.26(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.06(\mathrm{~m}$, $1 \mathrm{H}), 4.02-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{dd}, \mathrm{J}=11.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{dd}, \mathrm{J}=9.6,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.85$ $(\mathrm{s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H}), 0.06-0.02(\mathrm{~m}, 15 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=166.7,119.6,112.7,87.1,67.9,66.5,63.0,61.7,26.1,25.78,25.76,18.5,18.10,18.07,17.6,-1.4,-$ 4.4, -4.5, -4.6, -4.8, -5.0, -5.2 ppm; IR (film): $\tilde{v}=2953,2929,2894,2857,1698,1584,1471,1521$, 1113, $1064 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{30} \mathrm{H}_{63} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{INa}^{+}$: 781.26387; found: 781.26417.

## 2-(trimethylsilyl)ethyl (2R,3S,4R)-3,4-bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)-

 oxy)methyl)-6-iodo-3,4-dihydro-2H-pyran-5-carboxylate (S21). Prepared analogously (791 mg, 88\%).
$[\alpha]_{\mathrm{D}}^{20}:+19.2\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.59(\mathrm{dd}, \mathrm{J}=3.4,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.38-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{dd}, \mathrm{J}=5.7,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (dd, J = 12.6, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.13-1.02(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}$, $9 H), 0.18-0.12(\mathrm{~m}, 6 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07-0.03(\mathrm{~m}, 15 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=166.0,115.0,114.8,85.9,68.8,66.2,63.4,61.4,26.2,26.1,25.9,18.6,18.5,18.4,17.4,-$ 1.4, -4.2, -4.4, -4.8, -4.9, -5.2, -5.3 ppm; IR (film): $\tilde{v}=2953,2929,2887,2857,1699,1575,1472,1309$, 1251, $1061 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{30} \mathrm{H}_{63} \mathrm{O}_{6} \mathrm{Si}_{4} \mathrm{INa}^{+}$: 781.26387; found: 781.26326.

2-(Trimethylsilyl)ethyl (2R,3R,4R)-3,4-bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)-oxy)methyl)-6-(3-hydroxyprop-1-yn-1-yl)-3,4-dihydro-2H-pyran-5-carboxylate (S22). $\left.\quad \mathrm{Pd}^{( } \mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$
 quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, 10:1) afforded the title compound ( $116 \mathrm{mg}, 87 \%$ ). $[\alpha]_{\mathrm{D}}^{20}:+6.9$ ( $\mathrm{c}=1, \mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=4.50-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.22(\mathrm{~m}$, $1 \mathrm{H}), 4.16-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=2.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=11.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=11.4$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.26 (bs, 1H), 1.04 (dd, J = 9.5, $7.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}$, $3 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}), 0.04(\mathrm{~s}, 12 \mathrm{H}), \mathrm{ppm} ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.9,143.6,111.1$, 93.1, 82.6, 80.6, 67.5, 65.3, 62.8, 61.8, 51.6, 26.1, 25.81, 25.75, 18.5, 18.1, 17.5, 1.2, -1.4, -4.4, -4.58, -4.63, -4.8, -5.1, -5.2 ppm; IR (film): $\tilde{v}=3429,2953,2930,2896,2857,1692$, 1601, 1472, 1389, 1251, 1220, $1070 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd. for $\mathrm{C}_{33} \mathrm{H}_{66} \mathrm{O}_{7} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 709.37782; found: 709.37779.

2-(Trimethylsilyl)ethyl (2R,3S,4R)-3,4-bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)-oxy)methyl)-6-(3-hydroxyprop-1-yn-1-yl)-3,4-dihydro-2H-pyran-5-carboxylate (S23). Prepared
 analogously ( $530 \mathrm{mg}, 75 \%$ ). $[\alpha]_{\mathrm{D}}^{20}:+19.4\left(\mathrm{c}=0.53, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=4.62(\mathrm{dd}, \mathrm{J}=3.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.36-4.24$ (m, 2H), 4.13 (dt, $J=6.3,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=12.4,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (dd, J = 5.8, 3.4 Hz, 1H), 3.92 (dd, J = 12.4, $0.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.83(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.11-0.99(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.063$ $(\mathrm{s}, 3 \mathrm{H}), 0.055(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl ${ }_{3}$ ): $\delta=166.2,143.4$, 113.0, $93.6,82.0,80.3,68.9,65.0,63.1,61.7,51.6,26.2\left(6 \mathrm{CH}_{3}\right), 26.0,18.6,18.53,18.47,17.4,-1.4,-$ 4.3, -4.4, -4.8, -4.9, -5.17, -5.21 ppm; IR (film): $\tilde{v}=3465,2953,2929,2895,2857,1677,1597,1472$, 1388, 1344, 1285, 1250, 1218, 1177, 1077, $1043 \mathrm{~cm}^{-1}$; HRMS (ESI): $m / z$ calcd. for $\mathrm{C}_{33} \mathrm{H}_{66} \mathrm{O}_{7} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 709.37779; found: 709.37757.
(2R,3R,4R)-3,4-Bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-7-

(hydroxymethyl)-3,4-dihydro-2H,5H-pyrano[4,3-b]pyran-5-one
(S24).
SPhosAuNTf 2 ( $2 \mathrm{mg}, 0.002 \mathrm{mmol}, 1 \mathrm{~mol} \%$ ) was added to a solution of $\mathbf{S 2 2}$ ( $131 \mathrm{mg}, 0.19 \mathrm{mmol}$ ) in $\mathrm{CH}_{3} \mathrm{NO}_{2}(1.3 \mathrm{~mL})$ and the resulting mixture was stirred for 16 h . The reaction
was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, 2:1) afforded the title compound ( $100 \mathrm{mg}, 89 \%$ ). $[\alpha]_{\mathrm{D}}^{20}:+41.1$ ( $\mathrm{c}=1, \mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.11(\mathrm{~s}, 1 \mathrm{H}), 4.44-4.32(\mathrm{~m}, 4 \mathrm{H}), 4.00-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{dd}, \mathrm{J}=10.7,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.81(\mathrm{dd}, \mathrm{J}=11.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{bs}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H})$, $0.14(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), \mathrm{ppm} ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $164.3,163.5,163.2,99.5,99.2,83.5,68.1,63.4,62.4,61.1,26.0,25.8,25.7,18.4,18.2,18.0,-4.6$, -4.7, -4.8, -5.0, -5.1, -5.2 ppm; IR (film): $\tilde{v}=3413,2953,2926,2857,1724,1697,1587,1472,1432$, 1254, $1077 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}^{+}$: 609.30704; found: 609.30696.
(2R,3S,4R)-3,4-Bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-7-
(hydroxymethyl)-3,4-dihydro-2H,5H-pyrano[4,3-b]pyran-5-one (S25). Prepared analogously
 (198 mg, 89\%). $[\alpha]_{\mathrm{D}}^{20}:+77.1$ (c = 0.78, $\mathrm{CHCl}_{3}$ ). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $6.09(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=3.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=6.7,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.41-$ $4.35(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.05(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{dd}, J=5.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.144(\mathrm{~s}, 3 \mathrm{H}), 0.136(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=163.6,163.4,101.3,99.1,82.4,69.1,63.3,62.2,61.3,26.1$ (9 $\left.\mathrm{CH}_{3}\right), 18.54,18.52,18.48,-4.3,-4.8\left(4 \mathrm{CH}_{3}\right),-4.9,-5.0,-5.1 \mathrm{ppm}$; IR (film): $\tilde{v}=3413,2929,2857,1719$, 1654, 1580, 1471, 1423, 1361, 1286, 1252, 1178, 109, 1048, 1022, $1005 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd. for $\mathrm{C}_{28} \mathrm{H}_{54} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}^{+}$: 609.30696; found: 609.30658.
(2R,3R,4R)-3,4-Bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-5-oxo-3,4-dihydro-2H,5H-pyrano[4,3-b]pyran-7-carbaldehyde (S26). Dess-Martin periodinane (564 mg,
 1.33 mmol ) was added in one portion to a solution of $\mathbf{S 2 4}$ ( 600 mg , 1.02 mmol ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.1 \mathrm{~mL})$ and the resulting mixture was stirred for 1.5 h . The reaction was quenched with sat aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and the aqueous phase was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography ( $\mathrm{SiO}_{2}$, hexanes:EtOAc, 10:1) afforded the title compound ( $507 \mathrm{mg}, 87 \%$ ). $[\alpha]_{\mathrm{D}}^{20}$ : $+68.5\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=9.52(\mathrm{~s}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.47-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.40$ (t, J = 2.5 Hz, 1H), $4.02(\mathrm{dd}, J=2.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=11.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, \mathrm{J}=11.9,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.04$ (s, 3H), $0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=183.5,161.8,161.3,153.4,108.7,106.6$, 84.0, $67.963 .5,62.2,26.0,25.8,25.7,18.5,18.2,18.0,-4.6,-4.7,-4.8,-4.9,-5.09,-5.12 \mathrm{ppm}$; IR (film):
$\tilde{v}=2953,2929,2857,1734,1714,1642,1584,1432,1254,1081 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{28} \mathrm{H}_{53} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}^{+}$: 607.29131; found: 607.29207.
(2R,3S,4R)-3,4-Bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-5-oxo-3,4-dihydro-2H,5H-pyrano[4,3-b]pyran-7-carbaldehyde (S27). Prepared analogously (156 mg, 99\%).
 $0.92(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~m}, 6 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=183.1,161.6,161.0,153.7,108.6,107.8,82.8,68.8,63.3,61.9$, $26.04\left(6 \mathrm{CH}_{3}\right), 26.03,18.48,18.47,18.43,-4.3,-4.8,-4.89,-4.93,-5.0,-5.2 \mathrm{ppm}$; IR (film): $\tilde{v}=2954$, 2930, 2886, 2857, 1731, 1641, 1578, 1425, 1254, $1095 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{28} \mathrm{H}_{53} \mathrm{O}_{7} \mathrm{Si}_{3} \mathrm{Na}^{+}$: 607.30937; found: 607.30917.
(2R,3R,4R)-3,4-Bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-7-((E)-2-iodovinyl)-3,4-dihydro-2H,5H-pyrano[4,3-b]pyran-5-on (S28) and (2R,3R,4R)-3,4-Bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-7-vinyl-3,4-dihydro-2H,5H-pyrano-[4,3-b]pyran-5-on (S29). A solution of S26 (540 mg, 0.92 mmol$)$ and $\mathrm{CHI}_{3}(727 \mathrm{mg}, 1.85 \mathrm{mmol})$ in 1,4-


R=1 $\quad \mathbf{S 2 8}$
$R=H \quad \mathbf{S 2 9}$ dioxane ( 8.7 mL ) was added dropwise to a suspension of $\mathrm{CrCl}_{2} \cdot 1.7$ THF $(1.36 \mathrm{~g}, 5.54 \mathrm{mmol})$ in THF $(8.7 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 2 h before the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The aqueous phase was extracted with $t \mathrm{BuOMe}$, the combined organic extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solution was concentrated. The residue was purified by flash chromatography ( $\mathrm{SiO}_{2}$, hexane:EtOAc, 100:1) affording S28 (365 mg, 56\%) and S29 (58 mg, 11\%) as a yellow solid each.

Analytical and spectral data of S28: $[\alpha]_{\mathrm{D}}^{20}:+53.1\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.46(\mathrm{~d}$, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 4.41-4.31(\mathrm{~m}, 2 \mathrm{H}), 4.00-3.91(\mathrm{~m}, 2 \mathrm{H}), 3.79$ (dd, J = 11.9, 4.0 Hz, 1H), $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})$, $0.06(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=163.1,162.7,136.0,101.3$, 101.1, 87.2, 83.6, 68.2, 63.5, 62.4, 26.0, 25.9, 25.7, 18.5, 18.2, 18.1, -4.6, -4.7, -4.8, -4.9, -5.08, -5.13 ppm; IR (film): $\tilde{v}=2953,2929,2857,1726,1642,1579,1471,1422,1255,1077 \mathrm{~cm}^{-1} ;$ HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{29} \mathrm{H}_{53} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{INa}^{+}$: 731.20869; found: 731.20902.

Analytical and spectral data of S29: $[\alpha]_{\mathrm{D}}^{20}:+32.2\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.26(\mathrm{~s}$, $1 \mathrm{H}), 7.01(\mathrm{~s}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.44-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{t}, \mathrm{J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.81$ (dd, J = 11.9, 4.0 Hz, 1H), $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$, $0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.1,162.4,130.6,103.3$,
101.5, 84.9, 83.5, 68.2, 63.5, 62.4, 26.0, 25.9, 25.8, 18.5, 18.2, 18.1, -4.5, -4.6, -4.8, -4.96, -5.02, -5.1 ppm, IR (film): $\tilde{v}=2954,2929,2857,1722,1639,1579,1423,1255,1076 \mathrm{~cm}^{-1}$, HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{29} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{Na}^{+}$: 582.32282, found: 582.32315.
(2R,3S,4R)-3,4-Bis((tert-butyldimethylsilyl)oxy)-2-(((tert-butyldimethylsilyl)oxy)methyl)-7-((E)-2-iodovinyl)-3,4-dihydro-2H,5H-pyrano[4,3-b]pyran-5-on (S30) Prepared analogously (105 mg, 55\%).
 $[\alpha]_{\mathrm{D}}^{20}:+41.6\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.49(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{dd}, \mathrm{J}=3.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42$ - 4.34 (m, 1H), 4.11 - 3.99 (m, 3H), $0.93(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H})$, $0.18(\mathrm{~s}, 3 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.031(\mathrm{~s}, 3 \mathrm{H}), 0.025(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=163.0,162.4,157.3,135.8,102.6,101.2,87.9,82.4,69.0,63.3,62.1,26.11$ (6 $\left.\mathrm{CH}_{3}\right), 26.10,18.6,18.52,18.48,-4.3,-4.8\left(2 \mathrm{CH}_{3}\right),-4.9,-5.0,-5.1 \mathrm{ppm} ; \operatorname{IR}($ film $): \tilde{v}=2954,2929,2857$, 1723, 1639, 1573, 1471, 1412, 1361, 1285, 1254, 1094, $1050 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{29} \mathrm{H}_{53} \mathrm{O}_{6} \mathrm{Si}_{3} \mathrm{INa}^{+}$: 731.20869; found: 731.20915.
(Z)-2-(Prop-1-yn-1-yl)hex-2-en-1-ol (S31). Ethyl-3,3,3-trifluoropyruvate ( $0.70 \mathrm{~mL}, 5.28 \mathrm{mmol}$ ) was added dropwise to a solution of 2-hexyn-1-ol ( $0.50 \mathrm{~mL}, 4.55 \mathrm{mmol}$ ) at room temperature and the resulting mixture was stirred for 30 min before it was cooled to $-78{ }^{\circ} \mathrm{C}$. Thexylborane $(0.9 \mathrm{M} \text { in THF, } 5.80 \mathrm{~mL}, 5.22 \mathrm{mmol})^{[8]}$ was added dropwise, the mixture was stirred for 5 min at $-78^{\circ} \mathrm{C}$ before it was warmed to room temperature and stirred for 10 min . TMAO ( $531 \mathrm{mg}, 4.78 \mathrm{mmol}$ ) was added in one portion and stirring was continued for 15 min at room temperature before a degassed solution of $\mathrm{KOH}\left(11.40 \mathrm{~mL}, 34.20 \mathrm{mmol}, 3 \mathrm{M}\right.$ in $\mathrm{H}_{2} \mathrm{O}$ ) was introduced. After stirring for an additional 10 min , 1-iodo-1-propyne ( $3.78 \mathrm{~g}, 22.75 \mathrm{mmol})^{7}$ and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ( $371 \mathrm{mg}, 0.46 \mathrm{mmol}$ ) were added and the mixture was stirred at $70{ }^{\circ} \mathrm{C}$ (bath temperature) for 1.5 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, 10:1) afforded the title compound ( $420 \mathrm{mg}, 67 \%$ ). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $)_{3}$ ) $\delta=5.88(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.97$ $(\mathrm{s}, 3 \mathrm{H}), 1.71(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{hex}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=138.5,123.2,85.3,79.2,60.3,30.2,22.6,13.9,4.4 \mathrm{ppm} ; \operatorname{IR}(f i l m): \tilde{v}=3380,2959$, 2931, 2918, 2872, 1461, 1378, 1336, 1033, $998 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{ONa}^{+}$: 161.09376, found: 161.09368.

(Z)-2-((E)-2-(Dimethyl(phenyl)silyl)prop-1-en-1-yl)hex-2-en-1-ol
(S32).
PhMe ${ }_{2}$ SiLi ( 1 M in THF, $45 \mathrm{~mL}, 45 \mathrm{mmol}$ ) was added dropwise to a suspension of CuCN ( $1.65 \mathrm{~g}, 18.42 \mathrm{mmol}$ ) in THF ( 15 mL ) at $-50^{\circ} \mathrm{C}$. The mixture was warmed to $-10^{\circ} \mathrm{C}$ and
stirred for 45 min . After cooling to $-50^{\circ} \mathrm{C}$, water ( $0.95 \mathrm{~mL}, 52.73 \mathrm{mmol}$ ) was added, the mixture was warmed to $-10^{\circ} \mathrm{C}$ and stirring was continued for 45 min . After cooling to $-50^{\circ} \mathrm{C}$, a solution of $\mathbf{S 3 1}$ ( $1.07 \mathrm{~g}, 7.74 \mathrm{mmol}$ ) in THF ( 15 mL ) was added dropwise, the mixture was warmed to $-10^{\circ} \mathrm{C}$ and stirred at this temperature for 2 h . The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, 20:1 to $10: 1$ ) afforded the title compound ( $1.76 \mathrm{~g}, 83 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 3 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H})$, $5.53(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.44$ (hex, $J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.38(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=139.4,138.4,137.9$, 136.4, 134.2, 134.1, 129.0, 127.9, 60.7, 30.1, 23.1, 16.8, 14.0, -3.3 ppm . IR (film): $\tilde{v}=3355,2957$, 2872, 1591, 1427, 1377, 1247, 1110, 998, $949 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{OSiNa}^{+}$: 297.16429, found: 297.16451.
(Z)-2-((E)-2-(Dimethyl(phenyl)silyl)prop-1-en-1-yl)hex-2-enal (S33). Dess-Martin-periodinane

( $636 \mathrm{mg}, 1.5 \mathrm{mmol}$ ) was added in one portion to a solution of $\mathbf{S 3 2}$ ( 275 mg , $1.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ at room temperature. The resulting mixture was stirred for 1.5 h before the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and the aqueous phase was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography ( $\mathrm{SiO}_{2}$, hexanes:EtOAc, 20:1) afforded the title compound ( $226 \mathrm{mg}, 83 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=10.13(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 3 \mathrm{H})$, $6.54(\mathrm{dt}, J=4.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48-6.44(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.75(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.62-$ $1.52(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.40(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=191.0,151.7$, 140.4, 138.0, 137.1, 134.2, 133.6, 129.1, 127.9, 29.2, 23.0, 17.1, 13.9, -3.4 ppm; IR (film): $\tilde{v}=2959$, $2872,1744,1678,1603,1427,1373,1248,1192,1111 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{OSiNa}^{+}$: 272.15937, found: 272.15964.

2-(Trimethylsilyl)ethyl (Z)-2-((E)-2-(dimethyl(phenyl)silyl)prop-1-en-1-yl)hex-2-enoate
(S34).
 $\mathrm{NaH}_{2} \mathrm{PO}_{4}(745 \mathrm{mg}, 6.21 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(35 \%$ in water, $1.10 \mathrm{~mL}, 11.32 \mathrm{mmol})$ were added to a solution of $\mathbf{S 3 3}$ ( $561 \mathrm{mg}, 2.06 \mathrm{mmol}$ ) in $t \mathrm{BuOH} /$ water (1:1) $(6.50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for $10 \mathrm{~min}, \mathrm{NaClO}_{2}(895 \mathrm{mg}$, 9.90 mmol ) was added, and stirring was continued for 18 h at room temperature. The reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase was extracted with hexane. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the
solvent was evaporated. The crude acid was dried in vacuum and used in the next step without further purification.

DEAD ( $1.14 \mathrm{~mL}, 6.26 \mathrm{mmol}$ ) was added over 30 min to a solution of the crude acid, $\mathrm{PPh}_{3}(1.95 \mathrm{~g}$, $7.43 \mathrm{mmol})$ and 2-TMS-ethanol ( $0.81 \mathrm{~mL}, 5.65 \mathrm{mmol}$ ) in THF ( 10.30 mL ) at $0^{\circ} \mathrm{C}$. After stirring for 2 h , the reaction was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and the aqueous phase was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, 100:1) afforded the title compound ( $514 \mathrm{mg}, 64 \%$ ). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.57-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.35(\mathrm{dd}, J=1.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{td}, J=3.8,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.30-4.19(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.07-1.00$ $(\mathrm{m}, 2 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.37(\mathrm{~s}, 6 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.7$, $143.2,138.2,137.6,136.3,134.2,131.3,129.1,127.9,62.9,31.6,22.7,17.4,16.4,14.1,-1.4,-3.4$ ppm; IR (film): $\tilde{v}=2956,2899,1456,1428,1380,1328,1249,1211,1157,1111 \mathrm{~cm}^{-1} ;$ HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Na}^{+}$: 411.21468, found: 411.21461.

2-(Trimethylsilyl)ethyl (Z)-2-((E)-2-iodoprop-1-en-1-yl)hex-2-enoate (S35). NIS (165 mg, 0.73 mmol$)$
 was added in one portion to a solution of $\mathbf{S 3 4}(190 \mathrm{mg}, 0.49 \mathrm{mmol})$ and 2,6-lutidine $(86 \mu \mathrm{~L}, 0.74 \mathrm{mmol})$ in hexafluoroisopropanol $(1.50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was stirred for 2 min before the reaction was quenched with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and the aqueous phase was extracted with $t \mathrm{BuOMe}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated. Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes:EtOAc, 100:1) afforded the title compound ( $156 \mathrm{mg}, 84 \%$ ). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.85-6.78(\mathrm{~m}, 1 \mathrm{H}), 5.94(\mathrm{td}, \mathrm{J}=3.8,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.28-4.20(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.53-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.07-1.00$ $(\mathrm{m}, 2 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=166.6,146.1,138.4$, $130.0,89.3,63.1,31.6,29.1,22.5,17.4,14.0,-1.3 \mathrm{ppm}$; IR (film): $\tilde{v}=2956,1714,1631,1456,1428$, 1379, 1248, 1218, 1157, $1069 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{O}_{2}$ SilNa ${ }^{+}$: 403.05626, found: 403.05608.

Compound S36. This reaction was performed in the dark. $\mathrm{Pd}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2} \mathrm{Cl}_{2}(1.5 \mathrm{mg}, 0.005 \mathrm{mmol})$ was
 added to a degassed (pump and freeze, 3 cycles) solution of $\mathrm{Ph}_{3} \mathrm{As}(3.2 \mathrm{mg}, 0.01 \mathrm{mmol})$ in DMF ( 0.05 mL ) and the mixture was stirred for 5 min . The resulting mixture was transferred to a degassed (pump and freeze, 3 cycles) solution of S34 $(40 \mathrm{mg}, 0.105 \mathrm{mmol})$, tetraene $35(55 \mathrm{mg}, 0.105 \mathrm{mmol})$ and $\left[\mathrm{Ph}_{2} \mathrm{PO}_{2}\right]\left[\mathrm{NBu}_{4}\right](146 \mathrm{mg}, 0.32 \mathrm{mmol})^{[11]} \mathrm{in}$ DMF ( 0.5 mL ) and stirring was continued for 20 h at room temperature. Degassed $\mathrm{K}_{3} \mathrm{PO}_{4}(3 \mathrm{M}$ in
water, $0.05 \mathrm{~mL}, 0.15 \mathrm{mmol}$ ) was then added, followed by a solution of pyrone S28 ( 68 mg , $0.095 \mathrm{mmol})$ in THF ( 0.5 mL ) and $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}(7.7 \mathrm{mg}, 0.01 \mathrm{mmol})$. The resulting mixture was stirred for 16 h , the reaction was quenched with water and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with brine and dried over $\mathrm{MgSO}_{4}$. The drying agent was filtered off and the solvent was evaporated (below $20^{\circ} \mathrm{C}$ ). Purification of the crude product by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexanes $\left.+2.5 \% \mathrm{NEt}_{3}\right)$ afforded the title compound ( $48 \mathrm{mg}, 54 \%$ ). $[\alpha]_{\mathrm{D}}^{20}:+47.0$ $\left(\mathrm{c}=0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.17(\mathrm{dd}, \mathrm{J}=15.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, \mathrm{J}=14.9,10.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.47-6.27(\mathrm{~m}, 7 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82 \mathrm{~s}, 1 \mathrm{H})$, $4.42-4.33(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.01-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{dd}, J=11.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{q}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.09-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}$, $9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06-0.03(\mathrm{~m}, 12 \mathrm{H})$, 0.02 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=168.3,163.7,163.2,158.4,143.8,139.3,138.7$, $136.5,135.9,135.64,135.55,132.7,132.3,131.3,131.2,130.4,128.8,121.8,101.0,100.0,83.4,68.4$, $63.6,63.0,62.5,31.9,26.0,25.9,25.8,22.7,18.5,18.2,18.1,17.5,14.0,13.8,-1.4,-4.55,-4.63,-4.8,-$ 4.9, -5.07, -5.14 ppm; IR (film): $\tilde{v}=2954,2929,2857,1715,1635,1568,1543,1426,1252,1217$, 1075, $1005 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{51} \mathrm{H}_{86} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 731.20869, found: 731.20902.

Compound S37. Prepared analogously as a red oil ( $18 \mathrm{mg}, 56 \%$ ). $[\alpha]_{\mathrm{D}}^{20}:+88$ (c $=0.1, \mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR
 $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.18(\mathrm{dd}, \mathrm{J}=15.0,11.4$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 6.54 (dd, J = 14.5, 10.7 Hz, 1H), 6.50 - 6.27 (m, 7H); 6.13 (s, 1H), 6.02 (d, J = 15.1 $\mathrm{Hz}, 1 \mathrm{H}$ ), 5.83 (s, 1H), 5.66 (dd, J = 10.3, 0.8 $\mathrm{Hz}, 1 \mathrm{H}) ; 4.62(\mathrm{dd}, \mathrm{J}=3.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.05(\mathrm{~m}, 2 \mathrm{H})$, $4.03(\mathrm{dd}, \mathrm{J}=5.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-2.95(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~d}, \mathrm{~J}=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.13-$ $1.03(\mathrm{~m}, 4 \mathrm{H}), 1.01(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.84(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$, 0.03 (s, 3H) ppm; ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=168.4,163.5,163.1,158.9,149.8,139.5,139.1$, $136.8,136.3,135.9,135.5,132.7,132.3,131.0$,130.6, 129.6, 128.7, 121.5, 101.5, 100.8, 82.2, 69.1, $63.4,63.1,62.3,44.5,32.2,31.8,29.3,26.2,26.1\left(6 \mathrm{CH}_{3}\right), 20.7,19.6,18.57,18.55,18.5,17.6,13.7$, 11.3, -1.4, -4.2, -4.7, -4.8, -4.9, -5.0, -5.1 ppm; IR (film): $\tilde{v}=2956,2928,2857,1721,1633,1543,1462$, 1416, 1379, 1361, 1251, 1205, 1166, 1123, 1070, 1050, $1005 \mathrm{~cm}^{-1}$; HRMS (ESI): $\mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{55} \mathrm{H}_{94} \mathrm{O}_{8} \mathrm{Si}_{4} \mathrm{Na}^{+}$: 1017.59180, found: 1017.59249.

Compound 39. This reaction was performed in the dark. A solution of TASF ( $62 \mathrm{mg}, 0.225 \mathrm{mmol}$ ) in


DMF ( 0.3 mL ) was added to a solution of $\mathbf{S 3 7}(30 \mathrm{mg}$, $0.031 \mathrm{mmol})$ in $\mathrm{DMF}(0.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min at $0^{\circ} \mathrm{C}$ and for 18 h at room temperature before the reaction was quenched with aq. HCl . The aqueous phase ( $\mathrm{pH}=3$ ) was extracted with EtOAc, the combined extracts were dried over $\mathrm{MgSO}_{4}$, the drying agent was filtered off and the solvent was evaporated (below $20^{\circ} \mathrm{C}$ ). Purification of the crude product by HPLC (column: 150 mm YMC Actus, $\varnothing=20 \mathrm{~mm}$; stationary phase: YMC ODS-A, $5 \mu \mathrm{~m}, 20150$ 00456; eluent: methanol / TFA in water $\mathrm{pH} 3.5=75: 25$ ) afforded the title compound ( $8.6 \mathrm{mg}, 54 \%$ ). $[\alpha]_{\mathrm{D}}^{20}:+10.2$ ( $\mathrm{c}=0.5$, DMSO); ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$-DMSO): $\delta=12.72(\mathrm{bs}, 1 \mathrm{H}), 7.04(\mathrm{dd}, \mathrm{J}=15.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, \mathrm{J}$ $=14.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.57-6.38(\mathrm{~m}, 7 \mathrm{H}), 6.33(\mathrm{~d}, \mathrm{~J}=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{t}, \mathrm{J}=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~m}, 1 \mathrm{H}), 4.23$ $(\mathrm{m}, 1 \mathrm{H}), 3.88-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.58(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{dt}, \mathrm{J}=7.8,7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.81(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~h}, \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}\right): \delta=$ 169.3, 163.2, 162.5, 157.6, 140.7, 138.9, 138.6, 136.3, 135.4, 134.62, 134.56, 132.9, 132.6, 132.5, 131.4, 130.4, 128.8, 122.1, 101.0, 100.2, 82.4, 67.0, 61.9, 60.2, 31.2, 22.1, 13.7, 13.2 ppm; IR (film): $\tilde{v}=3450,2995,2912,1662,1436,1407,1310,1042,1026,952 \mathrm{~cm}^{-1}$; HRMS (EI): $m / z$ calcd. for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{O}_{8}^{-}: 495.20245$, found: 495.20314 .

Compound 40. Prepared analogously from ( $R, S$ )-29 and $\mathbf{S 3 0}$ as a red solid ( $5 \mathrm{mg}, 50 \%$ ). $[\alpha]_{D}^{20}:-32$ ( $c=$
 0.05, DMSO); ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz},\left[\mathrm{D}_{6}\right]$-DMSO): $\delta$ $=12.76$ (bs, 1H), $7.04(\mathrm{dd}, \mathrm{J}=15.2,11.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.73 (dd, $J=14.5,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$ (dd, $J=$ $14.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.50-6.40(\mathrm{~m}, 6 \mathrm{H}), 6.32(\mathrm{~d}, \mathrm{~J}$ $=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 5.64(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{bs}, 1 \mathrm{H}), 5.10(\mathrm{bd}, \mathrm{J}=4.7 \mathrm{~Hz}$, 1 H ), $4.96(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{dt}, J=6.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, \mathrm{J}=5.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.67$ (m, 2H), 2.88 (ddqd, J = 10.3, 7.7, 6.6, $6.4 \mathrm{Hz1H}$ ), 1.81 (s, 1H), $1.36-1.28$ (m, 2H), $1.25(\mathrm{dt}, J=13.3$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.13 (ddd, $J=13.3,7.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.09-1.02 (m, 1H), $0.95(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.811(\mathrm{~d}, \mathrm{~J}$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.806(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $\left.151 \mathrm{MHz},\left[\mathrm{D}_{6}\right]-\mathrm{DMSO}\right): \delta=169.4,164.2,162.1$, 157.7, 146.7, 139.0, 138.7, 136.4, 135.5, 134.8, 134.6, 132.9, 132.6, 131.3, 130.8, 130.4, 128.8, 122.0, 101.0, 100.7, 80.1, 64.7, 61.6, 59.3, 43.8, 31.6, 31.3, 28.5, 20.6, 19.4, 13.2, 11.0 ppm; IR (film): $\tilde{v}=$ $3396,2940,2913,2822,2253,2126,1662,1446,1411,1050,1023,1003 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd. for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{O}_{8}^{-}:, 551.26505$ found: 551.26579.


-







$\underbrace{\text { Mndrand }}$
$\underbrace{\text { Nom }}$











| $\stackrel{\square}{\square}$ |  |  | $\stackrel{\text { ¢ }}{ }$ |
| :---: | :---: | :---: | :---: |
| $\stackrel{\square}{\square}$ |  |  | A |
|  | $\xrightarrow{\sim}$ | Milyl |  |










| \% | $\begin{aligned} & \stackrel{\rightharpoonup}{5} \\ & \underset{j}{5} \end{aligned}$ | $\stackrel{\square}{-}$ | $\stackrel{\square}{\text { ® }}$ |  | $\stackrel{\infty}{\infty}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |






- $^{183.47}$
$=^{164.27}$
$=161.81$
-153.45


















$$
\left.\right|^{\text {®ั }}
$$



## $\mathrm{TO}^{\mathrm{OH}}$














|
$\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$



























[^5]



[^6]








## 




d6-DMSO


$600 \mathrm{MHz}, \mathrm{d} 4-\mathrm{MeOH}$






$\left.\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}\right)$

$\qquad$




|  | \% |
| :---: | :---: |
|  |  |
| \V \/\|| |  |



$\qquad$





Spectra comparison of isolated and synthetic compounds




| 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | ppm |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



$600 \mathrm{Mhz}, \mathrm{d} 4-\mathrm{MeOH}$



$600 \mathrm{MHz}, \mathrm{d} 4-\mathrm{MeOH}$



$151 \mathrm{MHz}, \mathrm{d} 4-\mathrm{MeOH}$

$151 \mathrm{MHz}, \mathrm{d} 4-\mathrm{MeOH}$

isolated
(Bioorg. Med. Chem. Lett,
22 (2012) 3188-3190)









|r


























$\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$






















[^0]:    ${ }^{[1]}$ M. Jørgensen, E. H. Iversen, R. Madsen, J. Org. Chem. 2001, 66, 4625-4629.
    ${ }^{[2]}$ S. A. Burova, F. E. McDonald, J. Am. Chem. Soc. 2004, 126, 2495-2500.
    ${ }^{[3]}$ J. S. Lee, J. Shin, H. J. Shin, H.-S. Lee, Y.-J. Lee, H.-S. Lee, H. Won, Eur. J. Org. Chem. 2014, 21, 44724476.
    ${ }^{[4]}$ A. G. Myers, B. H. Yang, Org. Synth. 2000, 77, 22-28.
    ${ }^{[5]}$ J. W. Bode, E. M. Carreira, J. Org. Chem. 2001, 66, 6410-6414.
    ${ }^{[6]}$ D. E. Cane, F. Kudo, K. Kinoshita, C. Khosla, Chem. Biol. 2002, 9, 131-142.
    ${ }^{[7]}$ L. Brandsma, J. W. Zwikker, Science of Synthesis 2006, 8a, 285-303.
    ${ }^{[8]}$ G. Zweifel, G. M. Clark, N. L. Polston, J. Am. Chem. Soc. 1971, 93, 3395-3399.
    ${ }^{[9]}$ I. Fleming, F. Roessler, J. Chem. Soc., Chem. Commun. 1980, 6, 276-277.
    ${ }^{[10]}$ N. Mezailles, L. Ricard, F. Gagosz, Org. Lett. 2005, 7, 4133-4136.
    ${ }^{[11]}$ J. Srogl, G.D. Allred, L.S. Liebeskind J. Am. Chem. Soc. 1997, 119, 12376-12377.

[^1]:    ${ }^{[a]}$ Y.-Z. Shu, Q. Ye, H. Li, K. F. Kadow, R. A. Hussain, S. Huang, D. R. Gustavson, S. E. Lowe, L.-P. Chang, D. M. Pirnik, K. Kodukula, Bioorg. Med. Chem. Lett. 1997, 7, 2295-2298.

[^2]:    ${ }^{[12]}$ A. Kanai, T. Kamino, K. Kuramochi, S. Kobayashi, Org. Lett. 2003, 5, 2837-2839.

[^3]:    ${ }^{[13]}$ I. Paterson, G. J. Florence, A. C. Heimann, A. C. Mackay, Angew. Chem. Int. Ed. 2005, 44, 1130.

[^4]:    ${ }^{[14]}$ N. G. Ramesh, K. K. Balasubramanian, Tetrahedron Lett. 1991, 32, 3875-3878.

[^5]:    
    

[^6]:    
    

